5,811 research outputs found

    Realistic, Extensible DNS and mDNS Models for INET/OMNeT++

    Full text link
    The domain name system (DNS) is one of the core services in today's network structures. In local and ad-hoc networks DNS is often enhanced or replaced by mDNS. As of yet, no simulation models for DNS and mDNS have been developed for INET/OMNeT++. We introduce DNS and mDNS simulation models for OMNeT++, which allow researchers to easily prototype and evaluate extensions for these protocols. In addition, we present models for our own experimental extensions, namely Stateless DNS and Privacy-Enhanced mDNS, that are based on the aforementioned models. Using our models we were able to further improve the efficiency of our protocol extensions.Comment: Published in: A. F\"orster, C. Minkenberg, G. R. Herrera, M. Kirsche (Eds.), Proc. of the 2nd OMNeT++ Community Summit, IBM Research - Zurich, Switzerland, September 3-4, 201

    Enabling Practical IPsec authentication for the Internet

    Get PDF
    On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops (First International Workshop on Information Security (IS'06), OTM Federated Conferences and workshops). Montpellier, Oct,/Nov. 2006There is a strong consensus about the need for IPsec, although its use is not widespread for end-to-end communications. One of the main reasons for this is the difficulty for authenticating two end-hosts that do not share a secret or do not rely on a common Certification Authority. In this paper we propose a modification to IKE to use reverse DNS and DNSSEC (named DNSSEC-to-IKE) to provide end-to-end authentication to Internet hosts that do not share any secret, without requiring the deployment of a new infrastructure. We perform a comparative analysis in terms of requirements, provided security and performance with state-of-the-art IKE authentication methods and with a recent proposal for IPv6 based on CGA. We conclude that DNSSEC-to-IKE enables the use of IPsec in a broad range of scenarios in which it was not applicable, at the price of offering slightly less security and incurring in higher performance costs.Universidad de Montpellier IIPublicad

    The Rise of Certificate Transparency and Its Implications on the Internet Ecosystem

    Full text link
    In this paper, we analyze the evolution of Certificate Transparency (CT) over time and explore the implications of exposing certificate DNS names from the perspective of security and privacy. We find that certificates in CT logs have seen exponential growth. Website support for CT has also constantly increased, with now 33% of established connections supporting CT. With the increasing deployment of CT, there are also concerns of information leakage due to all certificates being visible in CT logs. To understand this threat, we introduce a CT honeypot and show that data from CT logs is being used to identify targets for scanning campaigns only minutes after certificate issuance. We present and evaluate a methodology to learn and validate new subdomains from the vast number of domains extracted from CT logged certificates.Comment: To be published at ACM IMC 201

    Securing The Root: A Proposal For Distributing Signing Authority

    Get PDF
    Management of the Domain Name System (DNS) root zone file is a uniquely global policy problem. For the Internet to connect everyone, the root must be coordinated and compatible. While authority over the legacy root zone file has been contentious and divisive at times, everyone agrees that the Internet should be made more secure. A newly standardized protocol, DNS Security Extensions (DNSSEC), would make the Internet's infrastructure more secure. In order to fully implement DNSSEC, the procedures for managing the DNS root must be revised. Therein lies an opportunity. In revising the root zone management procedures, we can develop a new solution that diminishes the impact of the legacy monopoly held by the U.S. government and avoids another contentious debate over unilateral U.S. control. In this paper we describe the outlines of a new system for the management of a DNSSEC-enabled root. Our proposal distributes authority over securing the root, unlike another recently suggested method, while avoiding the risks and pitfalls of an intergovernmental power sharing scheme
    • …
    corecore