595 research outputs found

    On the Pauli graphs of N-qudits

    Full text link
    A comprehensive graph theoretical and finite geometrical study of the commutation relations between the generalized Pauli operators of N-qudits is performed in which vertices/points correspond to the operators and edges/lines join commuting pairs of them. As per two-qubits, all basic properties and partitionings of the corresponding Pauli graph are embodied in the geometry of the generalized quadrangle of order two. Here, one identifies the operators with the points of the quadrangle and groups of maximally commuting subsets of the operators with the lines of the quadrangle. The three basic partitionings are (a) a pencil of lines and a cube, (b) a Mermin's array and a bipartite-part and (c) a maximum independent set and the Petersen graph. These factorizations stem naturally from the existence of three distinct geometric hyperplanes of the quadrangle, namely a set of points collinear with a given point, a grid and an ovoid, which answer to three distinguished subsets of the Pauli graph, namely a set of six operators commuting with a given one, a Mermin's square, and set of five mutually non-commuting operators, respectively. The generalized Pauli graph for multiple qubits is found to follow from symplectic polar spaces of order two, where maximal totally isotropic subspaces stand for maximal subsets of mutually commuting operators. The substructure of the (strongly regular) N-qubit Pauli graph is shown to be pseudo-geometric, i. e., isomorphic to a graph of a partial geometry. Finally, the (not strongly regular) Pauli graph of a two-qutrit system is introduced; here it turns out more convenient to deal with its dual in order to see all the parallels with the two-qubit case and its surmised relation with the generalized quadrangle Q(4, 3), the dual ofW(3).Comment: 17 pages. Expanded section on two-qutrits, Quantum Information and Computation (2007) accept\'

    Quantum Error Correcting Codes Using Qudit Graph States

    Full text link
    Graph states are generalized from qubits to collections of nn qudits of arbitrary dimension DD, and simple graphical methods are used to construct both additive and nonadditive quantum error correcting codes. Codes of distance 2 saturating the quantum Singleton bound for arbitrarily large nn and DD are constructed using simple graphs, except when nn is odd and DD is even. Computer searches have produced a number of codes with distances 3 and 4, some previously known and some new. The concept of a stabilizer is extended to general DD, and shown to provide a dual representation of an additive graph code.Comment: Version 4 is almost exactly the same as the published version in Phys. Rev.

    Pauli graphs when the Hilbert space dimension contains a square: why the Dedekind psi function ?

    Full text link
    We study the commutation relations within the Pauli groups built on all decompositions of a given Hilbert space dimension qq, containing a square, into its factors. Illustrative low dimensional examples are the quartit (q=4q=4) and two-qubit (q=22q=2^2) systems, the octit (q=8q=8), qubit/quartit (q=2×4q=2\times 4) and three-qubit (q=23q=2^3) systems, and so on. In the single qudit case, e.g. q=4,8,12,...q=4,8,12,..., one defines a bijection between the σ(q)\sigma (q) maximal commuting sets [with σ[q)\sigma[q) the sum of divisors of qq] of Pauli observables and the maximal submodules of the modular ring Zq2\mathbb{Z}_q^2, that arrange into the projective line P1(Zq)P_1(\mathbb{Z}_q) and a independent set of size σ(q)−ψ(q)\sigma (q)-\psi(q) [with ψ(q)\psi(q) the Dedekind psi function]. In the multiple qudit case, e.g. q=22,23,32,...q=2^2, 2^3, 3^2,..., the Pauli graphs rely on symplectic polar spaces such as the generalized quadrangles GQ(2,2) (if q=22q=2^2) and GQ(3,3) (if q=32q=3^2). More precisely, in dimension pnp^n (pp a prime) of the Hilbert space, the observables of the Pauli group (modulo the center) are seen as the elements of the 2n2n-dimensional vector space over the field Fp\mathbb{F}_p. In this space, one makes use of the commutator to define a symplectic polar space W2n−1(p)W_{2n-1}(p) of cardinality σ(p2n−1)\sigma(p^{2n-1}), that encodes the maximal commuting sets of the Pauli group by its totally isotropic subspaces. Building blocks of W2n−1(p)W_{2n-1}(p) are punctured polar spaces (i.e. a observable and all maximum cliques passing to it are removed) of size given by the Dedekind psi function ψ(p2n−1)\psi(p^{2n-1}). For multiple qudit mixtures (e.g. qubit/quartit, qubit/octit and so on), one finds multiple copies of polar spaces, ponctured polar spaces, hypercube geometries and other intricate structures. Such structures play a role in the science of quantum information.Comment: 18 pages, version submiited to J. Phys. A: Math. Theo

    About the Dedekind psi function in Pauli graphs

    Full text link
    We study the commutation structure within the Pauli groups built on all decompositions of a given Hilbert space dimension qq, containing a square, into its factors. The simplest illustrative examples are the quartit (q=4q=4) and two-qubit (q=22q=2^2) systems. It is shown how the sum of divisor function σ(q)\sigma(q) and the Dedekind psi function ψ(q)=q∏p∣q(1+1/p)\psi(q)=q \prod_{p|q} (1+1/p) enter into the theory for counting the number of maximal commuting sets of the qudit system. In the case of a multiple qudit system (with q=pmq=p^m and pp a prime), the arithmetical functions σ(p2n−1)\sigma(p^{2n-1}) and ψ(p2n−1)\psi(p^{2n-1}) count the cardinality of the symplectic polar space W2n−1(p)W_{2n-1}(p) that endows the commutation structure and its punctured counterpart, respectively. Symmetry properties of the Pauli graphs attached to these structures are investigated in detail and several illustrative examples are provided.Comment: Proceedings of Quantum Optics V, Cozumel to appear in Revista Mexicana de Fisic

    Pauli graphs, Riemann hypothesis, Goldbach pairs

    Full text link
    Let consider the Pauli group Pq=\mathcal{P}_q= with unitary quantum generators XX (shift) and ZZ (clock) acting on the vectors of the qq-dimensional Hilbert space via X∣s>=∣s+1>X|s> =|s+1> and Z∣s>=ωs∣s>Z|s> =\omega^s |s>, with ω=exp⁥(2iπ/q)\omega=\exp(2i\pi/q). It has been found that the number of maximal mutually commuting sets within Pq\mathcal{P}_q is controlled by the Dedekind psi function ψ(q)=q∏p∣q(1+1p)\psi(q)=q \prod_{p|q}(1+\frac{1}{p}) (with pp a prime) \cite{Planat2011} and that there exists a specific inequality ψ(q)q>eÎłlog⁥log⁥q\frac{\psi (q)}{q}>e^{\gamma}\log \log q, involving the Euler constant ÎłâˆŒ0.577\gamma \sim 0.577, that is only satisfied at specific low dimensions q∈A={2,3,4,5,6,8,10,12,18,30}q \in \mathcal {A}=\{2,3,4,5,6,8,10,12,18,30\}. The set A\mathcal{A} is closely related to the set AâˆȘ{1,24}\mathcal{A} \cup \{1,24\} of integers that are totally Goldbach, i.e. that consist of all primes p2p2) is equivalent to Riemann hypothesis. Introducing the Hardy-Littlewood function R(q)=2C2∏p∣np−1p−2R(q)=2 C_2 \prod_{p|n}\frac{p-1}{p-2} (with C2∌0.660C_2 \sim 0.660 the twin prime constant), that is used for estimating the number g(q)∌R(q)qln⁥2qg(q) \sim R(q) \frac{q}{\ln^2 q} of Goldbach pairs, one shows that the new inequality R(Nr)log⁥log⁥NrâȘ†eÎł\frac{R(N_r)}{\log \log N_r} \gtrapprox e^{\gamma} is also equivalent to Riemann hypothesis. In this paper, these number theoretical properties are discusssed in the context of the qudit commutation structure.Comment: 11 page

    Generalized Cluster States Based on Finite Groups

    Get PDF
    We define generalized cluster states based on finite group algebras in analogy to the generalization of the toric code to the Kitaev quantum double models. We do this by showing a general correspondence between systems with CSS structure and finite group algebras, and applying this to the cluster states to derive their generalization. We then investigate properties of these states including their PEPS representations, global symmetries, and relationship to the Kitaev quantum double models. We also discuss possible applications of these states.Comment: 23 pages, 4 figure

    Graph-Based Classification of Self-Dual Additive Codes over Finite Fields

    Full text link
    Quantum stabilizer states over GF(m) can be represented as self-dual additive codes over GF(m^2). These codes can be represented as weighted graphs, and orbits of graphs under the generalized local complementation operation correspond to equivalence classes of codes. We have previously used this fact to classify self-dual additive codes over GF(4). In this paper we classify self-dual additive codes over GF(9), GF(16), and GF(25). Assuming that the classical MDS conjecture holds, we are able to classify all self-dual additive MDS codes over GF(9) by using an extension technique. We prove that the minimum distance of a self-dual additive code is related to the minimum vertex degree in the associated graph orbit. Circulant graph codes are introduced, and a computer search reveals that this set contains many strong codes. We show that some of these codes have highly regular graph representations.Comment: 20 pages, 13 figure
    • 

    corecore