352 research outputs found

    Space station tracking requirements feasibility study, volume 1

    Get PDF
    The objective of this feasibility study is to determine analytically the accuracies of various sensors being considered as candidates for Space Station use. Specifically, the studies were performed whether or not the candidate sensors are capable of providing the required accuracy, or if alternate sensor approaches be investigated. Other topics related to operation in the Space Station environment were considered as directed by NASA-JCS. The following topics are addressed: (1) Space Station GPS; (2) Space Station Radar; (3) Docking Sensors; (4) Space Station Link Analysis; (5) Antenna Switching, Power Control, and AGC Functions for Multiple Access; (6) Multichannel Modems; (7) FTS/EVA Emergency Shutdown; (8) Space Station Information Systems Coding; (9) Wanderer Study; and (10) Optical Communications System Analysis. Brief overviews of the abovementioned topics are given. Wherever applicable, the appropriate appendices provide detailed technical analysis. The report is presented in two volumes. This is Volume 1, containing the main body and Appendices A through J

    Space Shuttle/TDRSS communication and tracking systems analysis

    Get PDF
    In order to evaluate the technical and operational problem areas and provide a recommendation, the enhancements to the Tracking and Data Delay Satellite System (TDRSS) and Shuttle must be evaluated through simulation and analysis. These enhancement techniques must first be characterized, then modeled mathematically, and finally updated into LinCsim (analytical simulation package). The LinCsim package can then be used as an evaluation tool. Three areas of potential enhancements were identified: shuttle payload accommodations, TDRSS SSA and KSA services, and shuttle tracking system and navigation sensors. Recommendations for each area were discussed

    NASA compendium of satellite communications programs

    Get PDF
    A comprehensive review of worldwide satellite communication programs is reported that ranges in time from the inception of satellite communications to mid-1971. Particular emphasis is placed on program results, including experiments conducted, communications system operational performance, and technology employed

    Research and technology highlights of the Lewis Research Center

    Get PDF
    Highlights of research accomplishments of the Lewis Research Center for fiscal year 1984 are presented. The report is divided into four major sections covering aeronautics, space communications, space technology, and materials and structures. Six articles on energy are included in the space technology section

    NASA Compendium of Satellite Communications Programs

    Get PDF
    A comprehensive review is presented of worldwide communication programs that range in time from the inception of satellite communications to August 1971. The programs included are: Echo, Courier, West Ford, Telstar, Relay, Syncom, Lincoln experimental satellites, Intelsat, Tacsat, Skynet, Nato system, and Telesat

    NASA compendium of satellite communications programs

    Get PDF
    A comprehensive review is given of worldwide satellite communication programs that range in time from the inception of satellite communications to mid-1974. Particular emphasis is placed on program results, including experiments conducted, communications system operational performance, and technology employed. The background for understanding these results is established through brief summaries of the program organization, system configuration, and satellite and ground terminal characteristics. Major consideration is given to the communications system aspects of each program, but general spacecraft technology and other experiments conducted as part of the same program are mentioned summarily

    Scientific applications of frequency-stabilized laser technology in space

    Get PDF
    A synoptic investigation of the uses of frequency-stabilized lasers for scientific applications in space is presented. It begins by summarizing properties of lasers, characterizing their frequency stability, and describing limitations and techniques to achieve certain levels of frequency stability. Limits to precision set by laser frequency stability for various kinds of measurements are investigated and compared with other sources of error. These other sources include photon-counting statistics, scattered laser light, fluctuations in laser power, and intensity distribution across the beam, propagation effects, mechanical and thermal noise, and radiation pressure. Methods are explored to improve the sensitivity of laser-based interferometric and range-rate measurements. Several specific types of science experiments that rely on highly precise measurements made with lasers are analyzed, and anticipated errors and overall performance are discussed. Qualitative descriptions are given of a number of other possible science applications involving frequency-stabilized lasers and related laser technology in space. These applications will warrant more careful analysis as technology develops

    Advanced multilateration theory, software development, and data processing: The MICRODOT system

    Get PDF
    The process of geometric parameter estimation to accuracies of one centimeter, i.e., multilateration, is defined and applications are listed. A brief functional explanation of the theory is presented. Next, various multilateration systems are described in order of increasing system complexity. Expected systems accuracy is discussed from a general point of view and a summary of the errors is listed. An outline of the design of a software processing system for multilateration, called MICRODOT, is presented next. The links of this software, which can be used for multilateration data simulations or operational data reduction, are examined on an individual basis. Functional flow diagrams are presented to aid in understanding the software capability. MICRODOT capability is described with respect to vehicle configurations, interstation coordinate reduction, geophysical parameter estimation, and orbit determination. Numerical results obtained from MICRODOT via data simulations are displayed both for hypothetical and real world vehicle/station configurations such as used in the GEOS-3 Project. These simulations show the inherent power of the multilateration procedure

    NASA Tech Briefs, December 2008

    Get PDF
    Topics covered include: Crew Activity Analyzer; Distributing Data to Hand-Held Devices in a Wireless Network; Reducing Surface Clutter in Cloud Profiling Radar Data; MODIS Atmospheric Data Handler; Multibeam Altimeter Navigation Update Using Faceted Shape Model; Spaceborne Hybrid-FPGA System for Processing FTIR Data; FPGA Coprocessor for Accelerated Classification of Images; SiC JFET Transistor Circuit Model for Extreme Temperature Range; TDR Using Autocorrelation and Varying-Duration Pulses; Update on Development of SiC Multi-Chip Power Modules; Radio Ranging System for Guidance of Approaching Spacecraft; Electromagnetically Clean Solar Arrays; Improved Short-Circuit Protection for Power Cells in Series; Electromagnetically Clean Solar Arrays; Logic Gates Made of N-Channel JFETs and Epitaxial Resistors; Improved Short-Circuit Protection for Power Cells in Series; Communication Limits Due to Photon-Detector Jitter; System for Removing Pollutants from Incinerator Exhaust; Sealing and External Sterilization of a Sample Container; Converting EOS Data from HDF-EOS to netCDF; HDF-EOS 2 and HDF-EOS 5 Compatibility Library; HDF-EOS Web Server; HDF-EOS 5 Validator; XML DTD and Schemas for HDF-EOS; Converting from XML to HDF-EOS; Simulating Attitudes and Trajectories of Multiple Spacecraft; Specialized Color Function for Display of Signed Data; Delivering Alert Messages to Members of a Work Force; Delivering Images for Mars Rover Science Planning; Oxide Fiber Cathode Materials for Rechargeable Lithium Cells; Electrocatalytic Reduction of Carbon Dioxide to Methane; Heterogeneous Superconducting Low-Noise Sensing Coils; Progress toward Making Epoxy/Carbon-Nanotube Composites; Predicting Properties of Unidirectional-Nanofiber Composites; Deployable Crew Quarters; Nonventing, Regenerable, Lightweight Heat Absorber; Miniature High-Force, Long-Stroke SMA Linear Actuators; "Bootstrap" Configuration for Multistage Pulse-Tube Coolers; Reducing Liquid Loss during Ullage Venting in Microgravity; Ka-Band Transponder for Deep-Space Radio Science; Replication of Space-Shuttle Computers in FPGAs and ASICs; Demisable Reaction-Wheel Assembly; Spatial and Temporal Low-Dimensional Models for Fluid Flow; Advanced Land Imager Assessment System; Range Imaging without Moving Parts

    Index to nasa tech briefs, issue number 2

    Get PDF
    Annotated bibliography on technological innovations in NASA space program
    • …
    corecore