461 research outputs found

    The pagenumber of k-trees is O(k)

    Get PDF
    AbstractA k-tree is a graph defined inductively in the following way: the complete graph Kk is a k-tree, and if G is a k-tree, then the graph resulting from adding a new vertex adjacent to k vertices inducing a Kk in G is also a k-tree. This paper examines the book-embedding problem for k-trees. A book embedding of a graph maps the vertices onto a line along the spine of the book and assigns the edges to pages of the book such that no two edges on the same page cross. The pagenumber of a graph is the minimum number of pages in a valid book embedding. In this paper, it is proven that the pagenumber of a k-tree is at most k+1. Furthermore, it is shown that there exist k-trees that require k pages. The upper bound leads to bounds on the pagenumber of a variety of classes of graphs for which no bounds were previously known

    Graph Treewidth and Geometric Thickness Parameters

    Full text link
    Consider a drawing of a graph GG in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of GG, is the classical graph parameter "thickness". By restricting the edges to be straight, we obtain the "geometric thickness". By further restricting the vertices to be in convex position, we obtain the "book thickness". This paper studies the relationship between these parameters and treewidth. Our first main result states that for graphs of treewidth kk, the maximum thickness and the maximum geometric thickness both equal k/2\lceil{k/2}\rceil. This says that the lower bound for thickness can be matched by an upper bound, even in the more restrictive geometric setting. Our second main result states that for graphs of treewidth kk, the maximum book thickness equals kk if k2k \leq 2 and equals k+1k+1 if k3k \geq 3. This refutes a conjecture of Ganley and Heath [Discrete Appl. Math. 109(3):215-221, 2001]. Analogous results are proved for outerthickness, arboricity, and star-arboricity.Comment: A preliminary version of this paper appeared in the "Proceedings of the 13th International Symposium on Graph Drawing" (GD '05), Lecture Notes in Computer Science 3843:129-140, Springer, 2006. The full version was published in Discrete & Computational Geometry 37(4):641-670, 2007. That version contained a false conjecture, which is corrected on page 26 of this versio

    Musubime to karamime no gurafu hyogen

    Get PDF
    制度:新 ; 報告番号:乙2277号 ; 学位の種類:博士(理学) ; 授与年月日:2010/6/22 ; 早大学位記番号:新540

    Experimental Evaluation of Book Drawing Algorithms

    Full text link
    A kk-page book drawing of a graph G=(V,E)G=(V,E) consists of a linear ordering of its vertices along a spine and an assignment of each edge to one of the kk pages, which are half-planes bounded by the spine. In a book drawing, two edges cross if and only if they are assigned to the same page and their vertices alternate along the spine. Crossing minimization in a kk-page book drawing is NP-hard, yet book drawings have multiple applications in visualization and beyond. Therefore several heuristic book drawing algorithms exist, but there is no broader comparative study on their relative performance. In this paper, we propose a comprehensive benchmark set of challenging graph classes for book drawing algorithms and provide an extensive experimental study of the performance of existing book drawing algorithms.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Four Pages Are Indeed Necessary for Planar Graphs

    Get PDF
    An embedding of a graph in a book consists of a linear order of its vertices along the spine of the book and of an assignment of its edges to the pages of the book, so that no two edges on the same page cross. The book thickness of a graph is the minimum number of pages over all its book embeddings. Accordingly, the book thickness of a class of graphs is the maximum book thickness over all its members. In this paper, we address a long-standing open problem regarding the exact book thickness of the class of planar graphs, which previously was known to be either three or four. We settle this problem by demonstrating planar graphs that require four pages in any of their book embeddings, thus establishing that the book thickness of the class of planar graphs is four
    corecore