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The pagenumber of k-trees is O(k)
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Abstract

A k-tree is a graph de�ned inductively in the following way: the complete graph Kk is a
k-tree, and if G is a k-tree, then the graph resulting from adding a new vertex adjacent to k
vertices inducing a Kk in G is also a k-tree. This paper examines the book-embedding problem
for k-trees. A book embedding of a graph maps the vertices onto a line along the spine of the
book and assigns the edges to pages of the book such that no two edges on the same page
cross. The pagenumber of a graph is the minimum number of pages in a valid book embedding.
In this paper, it is proven that the pagenumber of a k-tree is at most k + 1. Furthermore, it
is shown that there exist k-trees that require k pages. The upper bound leads to bounds on
the pagenumber of a variety of classes of graphs for which no bounds were previously known.
? 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Given a graph G=(V; E), a p-page book embedding of G consists of two functions:
• A function � : V → {1; : : : ; |V |} that orders the vertices along the spine of the
book and

• A function � : E → {1; : : : ; p} that assigns the edges to pages in the book.
These functions must be such that no two edges assigned to the same page cross.
The pagenumber P(G) of G is the minimum p such that there exists a p-page book

embedding of G. Table 1 gives the pagenumber of a few classes of graphs.
In this paper we prove that every k-tree can be embedded in k + 1 pages and

that there are k-trees that require k pages. The upper bound leads to bounds on the
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Table 1
Pagenumber P of some classes of graphs

Graph class P

Outerplanar 1 [1]
Trees 1 [4]
Planar 4 [14]
Kn bn=2c[4]

Fig. 1. A 2-tree and a tree-decomposition thereof.

pagenumber of several other classes of graphs for which no bounds on pagenumber
were previously known.

2. k-trees

A k-tree is de�ned inductively in the following way:
• The k-vertex complete graph Kk is a k-tree.
• If G is a k-tree, then adding a new vertex to G that is adjacent to k vertices that
induce a Kk in G results in a k-tree.

A partial k-tree is a subgraph of a k-tree. The notion of a partial k-tree is intimately
related to the notion of treewidth [2]. Speci�cally, a graph has treewidth k precisely if
it is a partial k-tree. A k-tree is a maximal graph with treewidth k. Our use of these
terms should be taken to imply minimality, i.e., if a graph G is a partial k-tree, or
equivalently has treewidth k, then it is implied that G is not a partial (k − 1)-tree.
A tree-decomposition of a graph G=(V; E) consists of a tree T=(I; F) and a family

{Xi: i ∈ I} of subsets of V such that [2]:
(1)

⋃
i∈I Xi = V ,

(2) For all (u; v) ∈ E, there exists an i ∈ I with u; v ∈ Xi, and
(3) For all i; j; k ∈ I , if j is on the path from i to k in T , then Xi ∩ Xk ⊂Xj.

If G has treewidth k, then there exists a tree-decomposition of G with maxi∈I |Xi |=k+1.
Fig. 1 illustrates a 2-tree and a tree-decomposition thereof.
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3. The pagenumber of k-trees

We now prove that k trees have pagenumber at most k + 1.

Theorem 1. If G is a k-tree; then P(G)6k + 1.

Proof. Consider a width-k tree-decomposition of G. Perform a depth-�rst search of T ,
and let the ordering �(v) of each vertex v be determined by the �rst time an i ∈ I
with v ∈ Xi is encountered in the depth-�rst search.
Now, consider a family of subtrees Tv of T , where Tv is the subtree induced by

the vertices i ∈ I such that v ∈ Xi. By property (3) of tree-decompositions, each Tv
is connected, i.e. a single tree. Now, consider coloring the subtrees such that no two
overlapping subtrees have the same color. The intersection graph of a set of subtrees
of a tree is a chordal graph [5]. That is, if one builds a graph in which the vertices
correspond to subtrees of a tree and in which there is an edge between two vertices if
and only if their corresponding subtrees intersect, then that graph is chordal. Chordal
graphs are perfect, implying (among other things) that their chromatic number is equal
to their maximum clique size. Since |Xi| = k + 1 for all i ∈ I , the family of subtrees
can be colored using k + 1 colors (a clique of size greater than k + 1 in the subtree
intersection graph would imply that some |Xi|¿k + 1).
We now use the coloring of the subtrees of T to color the edges of G. Let c(Tv)

be the color assigned to subtree Tv. Color each edge (u; v) ∈ E with the color c(u; v)
as follows:

c(u; v) =
{
c(Tu) if �(u)¡�(v); and
c(Tv) if �(v)¡�(u):

We claim that relative to the ordering � de�ned above, no two edges of the same
color cross. Suppose to the contrary that edges (a; b) and (c; d) have the same color
and that they cross, i.e. (without loss of generality), �(a)¡�(c)¡�(b)¡�(d). This
would imply that the corresponding paths in the subtrees Ta and Tc intersect, contra-
dicting the assumption that they have the same color. (Note, however, that edges can
nest, as in Fig. 2.)
Thus, the ordering in the book embedding is � as de�ned above, and each edge is

assigned to a page corresponding to its color. Since there are k +1 colors, this results
in a (k + 1)-page book embedding, proving the theorem.

Fig. 2 illustrates a 3-page embedding of the 2-tree shown in Fig. 1, computed ac-
cording to Theorem 1.

Fig. 2. A 3-page embedding of the 2-tree shown in Fig. 1.
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We now show that there are k-trees for which the embedding described by
Theorem 1 is within 1 of optimal.

Theorem 2. There are k-trees that require k pages.

Proof. Muder et al. [7] prove that

P(Kmn;n)¿
(

m
m+ 1

)
n:

The graph Kmk;k is a partial k-tree (simply add mk vertices all adjacent to the root
Kk), so taking the limit as m approaches in�nity implies the theorem.

It is unlikely that there exists a nontrivial worst-case lower bound on the pagenumber
of a partial k-tree. For example, the n × n grid graph has pagenumber 2 [4] but has
treewidth exactly n [10].

4. Pagenumber of other graph classes

Theorem 1 implies upper bounds on pagenumber for a number of classes of graphs
that have known treewidth. No upper bounds on pagenumber have been previously
shown for these classes of graphs. We now describe these upper bounds, which are
summarized in Table 2.
An almost-tree with parameter k is a graph G such that removing at most k edges

from each biconnected component of G results in a tree. Bodlaender [3] proves that
almost-trees with parameter k have treewidth at most k +1. Thus, by Theorem 1 they
have pagenumber at most k + 2.
A graph G has bandwidth k if there exists a linear ordering � of the vertices in G

such that for every edge (u; v) in G, it is the case that |�(u) − �(v)|6k. Bodlaender
Table 2
Upper bounds on pagenumber P of some classes of graphs (! is maxi-
mum clique size). Note that stronger bounds are known for bandwidth-k
and Halin graphs

Graph class P6

Almost-trees (k) k + 2
Bandwidth k k + 1
Cutwidth k k + 1
Halin 4
k-Outerplanar 3k
Chordal !
Split !
Undirected path !
Directed path !
Interval !
Circular arc 2!
Proper circular arc 2!− 1
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[3] proves that bandwidth-k graphs have treewidth at most k, and thus by Theorem 1
they have pagenumber at most k+1. Note, however, that Swaminathan et al. [12] have
recently proved that, in fact, the pagenumber of bandwidth-k graphs is exactly k − 1.
Similarly, a graph G has cutwidth k if there exists a linear ordering � of the vertices

in G such that

max
v∈V

|{(u; w): �(u)6�(v) and �(v)¡�(w)}|6k:

Bodlaender [3] proves that cutwidth-k graphs have treewidth at most k, and thus by
Theorem 1 they have pagenumber at most k + 1.
A graph G is a Halin graph if G can be decomposed into a tree with no degree-2

vertices and a cycle around the leaves of the tree. Halin graphs are partial 3-trees [13],
so by Theorem 1 they have pagenumber at most 4. However, Halin graphs are planar
and Hamiltonian, which Bernhart and Kainen [1] prove implies that they in fact have
pagenumber 2.
A graph G is k-outerplanar if it has a planar embedding such that removing all

vertices on the in�nite face results in a (k−1)-outerplanar graph (a standard outerplanar
graph is 1-outerplanar). Bodlaender [3] proves that k-outerplanar graphs have treewidth
at most 3k − 1, and thus by Theorem 1 they have pagenumber at most 3k.
A graph is chordal if every cycle on four or more edges has a chord, i.e. an edge

connecting two nonadjacent vertices on the cycle. Robertson and Seymour [11] prove
that if ! is the size of a maximum clique in a chordal graph G, then G has treewidth
at most ! − 1, so Theorem 1 implies a bound of ! on its pagenumber. Split graphs
(chordal graphs whose complement is also chordal), undirected and directed path
graphs (intersection graphs of paths in an undirected or directed tree), and interval
graphs (intersection graphs of intervals on the real line) are all chordal, so the same
bounds apply for these classes as well. Furthermore, the complete bipartite graph de-
scribed in the proof of Theorem 2 is a subgraph of an interval graph, so the lower
bound of Theorem 2 applies for all the classes of chordal graphs described above (all
of which contain the interval graphs as a subclass).
A circular arc graph is the intersection graph of a set of arcs on a circle. Bodlaender

[3] proves that the treewidth of a circular arc graph is at most 2! − 1, where again
! is the size of a maximum clique, and thus Theorem 1 implies that its pagenumber
is at most 2!. A proper circular arc graph is one with a circular arc representation
in which no arc properly contains another. In the same paper Bodlaender proves that
proper circular arc graphs have treewidth at most 2!− 2, and thus Theorem 1 implies
a bound of 2!− 1 on their pagenumber.

5. Conclusions

Perhaps the most pressing issue remaining is the gap between our upper bound of
k+1 and our lower bound of k. We conjecture that, in fact, every k-tree has a k-page
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book embedding. This conjecture has been shown to be true for k=1 (trees) and k=2
(series–parallel graphs) by Chung et al. [4].
An important issue raised by these results is computation of book embeddings of

partial k-trees. Our results provide a near-optimal algorithm for book embedding of a
k-tree, but the pagenumber of a partial k-tree can fall anywhere in the range 1 to k+1.
It seems likely that an algorithm exists that computes an optimal book embedding of
a partial k-tree in polynomial time for �xed k (though the time complexity may well
be exponential in k).
The book embedding problem can be reformulated in terms of stack layouts. An

s-stack layout of a graph is an ordering of the vertices and an assignment of each edge
to one of s stacks, such that if the vertices are traversed in order, then each edge can
be pushed onto its stack when its left endpoint is encountered and popped from its
stack when its right endpoint is encountered. A p-page book embedding and a p-stack
layout are precisely equivalent, with the same ordering and with pages corresponding
to stacks.
A related problem is queue layout, where the stacks are replaced by queues [6]. This

can be cast in terms of book embeddings by requiring that no two edges in the same
page nest. One might wonder whether bounds on the number of queues required for a
k-tree can be found, similar to those presented here for stacks. Fairly strong evidence
exists suggesting that the answer is “no”. Pemmaraju [8] examines a planar subclass
of the 3-trees called stellated triangles and provides evidence that their queuenumber
is unbounded. Note, however, that Rengarajan and Madhavan [9] have proven that the
queuenumber of 2-trees is at most 3.
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