6 research outputs found

    Error Resilient Multipath Video Delivery on Wireless Overlay Networks

    Get PDF
    Real time applications delivering multimedia data over wireless networks still pose many challenges due to high throughput and stringent delay requirements. Overlay networks with multipath transmission is the promising solution to address the above problems. But in wireless networks the maintenance of overlay networks induce additional overheads affecting the bulky and delay sensitive delivery of multimedia data. To minimize the overheads, this work introduces the Error Compensated Data Distribution Model (ECDD) that aids in reducing end to end delays and overheads arising from packet retransmissions. The ECDD adopts mTreebone algorithm to identify the unstable wireless nodes and construct overlay tree. The overlay tree is further split to support multipath transmissions. A sub packetization mechanism is adopted for multipath video data delivery in the ECDD. A forward error correction mechanism and sub-packet retransmission techniques adopted in ECDD enables to reduce the overhead and end to end delay. The simulation results presented in this paper prove that the ECDD model proposed achieves lower end to end delay and outperforms the existing models in place. Retransmission requests are minimized by about 52.27% and bit errors are reduced by about 23.93% than Sub-Packet based Multipath Load Distribution

    On the Origins of Heavy-Tailed Delay in Dynamic Spectrum Access Networks

    No full text

    Modeling, analysis, and optimization for wireless networks in the presence of heavy tails

    Get PDF
    The heavy-tailed traffic from wireless users, caused by the emerging Internet and multimedia applications, induces extremely dynamic and variable network environment, which can fundamentally change the way in which wireless networks are conceived, designed, and operated. This thesis is concerned with modeling, analysis, and optimization of wireless networks in the presence of heavy tails. First, a novel traffic model is proposed, which captures the inherent relationship between the traffic dynamics and the joint effects of the mobility variability of network users and the spatial correlation in their observed physical phenomenon. Next, the asymptotic delay distribution of wireless users is analyzed under different traffic patterns and spectrum conditions, which reveals the critical conditions under which wireless users can experience heavy-tailed delay with significantly degraded QoS performance. Based on the delay analysis, the fundamental impact of heavy-tailed environment on network stability is studied. Specifically, a new network stability criterion, namely moment stability, is introduced to better characterize the QoS performance in the heavy-tailed environment. Accordingly, a throughput-optimal scheduling algorithm is proposed to maximize network throughput while guaranteeing moment stability. Furthermore, the impact of heavy-tailed spectrum on network connectivity is investigated. Towards this, the necessary conditions on the existence of delay-bounded connectivity are derived. To enhance network connectivity, the mobility-assisted data forwarding scheme is exploited, whose important design parameters, such as critical mobility radius, are derived. Moreover, the latency in wireless mobile networks is analyzed, which exhibits asymptotic linearity in the initial distance between mobile users.Ph.D
    corecore