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SUMMARY

Heavy-tailed distribution has been widely observed in a variety of computer

and communication networks, which leads to the bursty nature of Internet and mul-

timedia traffic, the highly variable channel condition, and the irregular mobility pat-

tern of network users. Different from the conventional light-tailed one, heavy-tailed

network environment exhibits extremely high variability and dynamics that can fun-

damentally change the way in which wireless networks are conceived, designed, and

operated.

This thesis is concerned with modeling, analysis, and optimization of wireless

networks in the presence of heavy tails. First, a novel traffic model is proposed, which

captures the inherent relationship between the traffic dynamics and the joint effects of

the mobility variability of network users and the spatial correlation in their observed

physical phenomenon. Then, the statistical attributes of the proposed model are

analyzed, which establish the conditions under which user mobility associated with

spatial correlation can lead to heavy-tailed traffic. To mitigate the bursty nature of

heavy-tailed traffic, a mobility-aware traffic shaping scheme is proposed to actively

regulate the network traffic by coordinating users’ mobility patterns.

Under heavy-tailed environment, the fundamental network performance limits in

terms of delay, stability, and connectivity are first analyzed. Then, the optimal al-

gorithms to approach these performance limits are proposed. More specifically, the

asymptotic delay distribution of wireless users is analyzed under different traffic pat-

terns and spectrum conditions, which reveals the critical conditions under which

wireless users can experience heavy-tailed delay with significantly degraded QoS per-

formance. To encounter this problem, multi-channel multi-radio solutions, including

x



spectrum mobility and multi-radio diversity, are developed. The proposed solutions

aim to yield the optimal QoS performance by exploiting the temporal diversity of

wireless channels in such a way that the heavy-tailed delay is mitigated to the maxi-

mum extent.

Based on the delay analysis, the fundamental impact of heavy-tailed environment

on network stability is studied. Specifically, a new network stability criterion, namely

moment stability, is introduced to better characterize the stability performance in the

presence of heavy-tailed traffic. Then, an asymptotic queueing analysis is performed

to reveal the critical conditions under which there exists a feasible scheduling policy

to achieve moment stability. Utilizing this analysis, a maximum-weight-β scheduling

algorithm is proposed, which associates each queue with a different parameter β and

makes the scheduling decision based on the queue lengths raised to the β-th power.

It is proven that the maximum-weight-β scheduling algorithm is throughput-optimal

in the sense that it stabilizes the network for any arrival rates in the stability region.

Furthermore, the impact of heavy-tailed spectrum on network connectivity is in-

vestigated. Towards this, a new connectivity criterion, namely delay-bounded con-

nectivity, is introduced, which simultaneously ensures the existence of routing paths

and the finiteness of the average delay and jitter along these paths. Then, the nec-

essary conditions on the existence of delay-bounded connectivity are derived. To

enhance network connectivity degraded by the spectrum burstiness, mobility-assisted

data forwarding schemes are exploited, which dramatically increase the information

delivery opportunities by exploiting the spatial diversity of the wireless spectrum and

the opportunistic contacts among mobile devices. Accordingly, as an important de-

sign parameter for all mobility-assisted data forwarding schemes, the critical mobility

radius is derived, which is a critical threshold on the maximum radius the network

user can reach, above which delay-bounded connectivity is guaranteed. Moreover, the

end-to-end latency of the mobility-assisted data forward schemes is analyzed, which

xi



exhibits asymptotic linearity in the initial distance between mobile users.

xii



CHAPTER I

INTRODUCTION

1.1 Background

The emerging Internet and multimedia applications, such as voice over Internet Proto-

col (VoIP), telemedicine, online gaming, video conferencing, and multimedia surveil-

lance, are expected to become dominant in current and next-generation wireless net-

works. Providing substantial levels of network quality of service (QoS) for these

applications in wireless domain is challenging because of the bursty nature of Inter-

net and multimedia traffic, the highly variable channel condition, and the mobility of

wireless network users. Specifically, significant empirical evidence establishes that the

burst duration of multimedia and Internet traffic, the channel occupancy time of wire-

less links, and the travel distance of mobile users can follow heavy-tailed distribution

[29] [44][63][32]. This distribution, compared with the conventional light-tailed one,

e.g., exponential distribution and Poisson distribution, exhibits significantly different

statistical attributes that can completely change the way how wireless networks are

conceived, designed, and operated. The objective of this thesis is to develop effective

traffic models, analyze fundamental performance limits, and design optimal control

schemes for wireless networks in the presence of heavy tails.

The performance of wireless networks heavily depends on the statistical properties

of the traffic arrival process. The seminal work of Leland et al. [29] established that

Internet traffic is heavy tailed and thus exhibits a property of correlation over a wide

range of time scales. The similar heavy tail properties are also widely observed in

multimedia traffic such as variable bit rate (VBR) video streams [41]. Since heavy tail

traffic behaves extremely bursty on a wide range of time scales, the impact of heavy

1



tail traffic on network performance is significantly different from that of light tailed

traffic, e.g., Poisson traffic. Particularly, heavy tail traffic can induce much larger

delay and higher packet loss rate than light tail traffic. These important consequences

motivate a great deal of research efforts on studying the origins of heavy tail traffic.

For example, the statistical analysis on real network traffic traces verifies that the tail

distribution of the file size on Internet web servers is heavy tailed and thus decays

much slower than exponentially [29]. This fact gives rise to very long traffic bursts

with non-negligible probability and thus causes long range dependent behavior of

Internet traffic.

In wireless networks, the traffic profile of the users is also considerably affected by

user mobility. Specifically, the traffic initiated by a mobile user could be associated

with different locations the user has visited. The traffic content generated at these

locations can exhibit a certain level of correlation, which may excessively depend on

the mutual distance between these locations [51]. Surprisingly, recent studies confirm

that the travel distance of mobile users follows heavy-tailed distribution [44], in sharp

contrast to the conventional light-tailed assumptions. Therefore, it is important to

assess whether and how such mobility pattern along with the spatial correlation im-

pacts the statistical properties of network traffic, in particular the rise of heavy tailed

properties. Accordingly, the revealed impact can be exploited to develop effective

traffic models and traffic engineering solutions.

Besides the heavy-tailed nature of network traffic, the dynamically changing wire-

less channel is another challenge of providing desired QoS performance for wireless

and mobile applications. The frequently disconnected wireless links not only cause

severe packet loss but also invoke undesirable retransmissions, which can further in-

duce unbounded delay and jitter even if the transmitted messages are of bounded

size [47]. What is more important, recent empirical results show that the channel

occupancy time of both WiFi and cellular networks exhibits heavy-tailed statistics,

2



which inevitably lead to extremely high channel variations [63][32]. Such channel

behavior has been demonstrated to profoundly impact the performance of spectrum

sensing operations, which serve as the building block for the network control func-

tions such as interference management and medium access control [63]. Despite its

importance, the impact of heavy-tailed traffic and channel models on the fundamental

performance limits of wireless networks is still under-exploited. To fill this gap, the

critical bounds of the key network attributes such as delay, stability, and connectivity

need to be analyzed. By this analysis, wireless networks can be better designed to

meet the increasing demands for the emerging multimedia and Internet applications

in wireless domain.

Achieving the performance limits of wireless networks requires the optimal de-

sign of network control functions at nearly all layers of the protocol stack such as

multi-channel diversity and power control at physical layer, medium access control

or scheduling at link layer, routing decisions at network layer, and congestion and

admission control at transport layer. Specifically, to minimize transmission delay,

multi-radio multi-channel diversity has been widely employed in the majority of wire-

less networks by exploiting the transmission opportunities at multiple channels [27].

In addition, to maintain desired network stability while maximizing the utilization

of limited spectrum resources, throughput-optimal scheduling policies have been pro-

posed with an objective to support the largest set of traffic rates that is allowed by

a given network [38][48]. Moreover, to improve network connectivity, the opportunis-

tic contacts among mobile devices have been exploited to increase the information

dissemination opportunities in the wireless networks with frequently impaired links

[22]. However, all these network control solutions were initially designed under the

light-tailed assumptions and their effectiveness in the presence of heavy tails is ques-

tionable. This necessitates the design of new optimal network control solutions that

fundamentally depart from the conventional ones.
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1.2 Research Objectives and Solutions

Heavy-tailed traffic has been widely observed in a variety of computer and commu-

nication networks. Different from the conventional light-tailed traffic, heavy-tailed

traffic exhibits high burstiness or strong dependence over a long range of time scales.

Such highly bursty nature can fundamentally change the way in which wireless net-

works are conceived, designed, and operated.

This proposal is concerned with modeling, analysis, and optimization of wireless

networks in the presence of heavy-tailed traffic. First, we propose a novel traffic

model, which captures the inherent relationship between the heavy-tailed traffic and

the joint effects of the mobility variability of network users and the spatial correlation

in their observed physical phenomenon. Then, under heavy-tailed environment, we

analyze the fundamental network performance limits in terms of latency, stability, and

connectivity. Then, we propose optimal algorithms spanning different protocol layers

to approach these performance limits. At physical layer, we provide an asymptotic

analysis of the transmission delay under dynamically changing spectrum with heavy-

tailed statistics. This analysis reveals that the promising dynamic spectrum access

schemes inevitably induce heavy-tailed delay that leads to significantly degraded QoS.

To encounter this problem, we propose optimal multi-radio multi-channel solutions

to mitigate heavy-tailed delay. Based on the delay analysis, at MAC layer, we study

the impact of heavy-tailed traffic on the stability performance of wireless networks

and accordingly design throughput-optimal scheduling policies with an objective to

maximize network throughput, while maintaining network stability in the presence

of heavy-tailed traffic. At network layer, we give a percolation-based connectivity

analysis under bursty spectrum with heavy-tailed behavior. To enhance network

connectivity impaired by the spectrum burstiness, we exploit mobility-assisted data

forwarding schemes, which dramatically increase the information delivery paths by

utilizing the spatial diversity of the wireless spectrum and the opportunistic contacts

4



among mobile devices.

1.2.1 On the New Origins of Heavy-tailed Traffic

The design of effective traffic models plays a key role in evaluating network per-

formance and developing efficient network control schemes. In a wireless network, a

mobile node may inject to the network the similar traffic at the proximal locations be-

cause their collected information at these location could be spatially correlated. This

yields temporal correlation in the network traffic. If this correlation decays slowly

as the time lag increases, then the traffic could exhibit long range dependent (LRD)

or heavy-tailed behavior. The traffic is LRD if its autocorrelation function follows a

power-law form as the lag approaches infinity. Previous works [29][16] have shown

that LRD traffic leads to fundamentally different impact on network performance

and protocol design, compared with the traditional traffic. To design effective and

efficient protocols for wireless applications, it is essential to investigate the relation-

ship between the LRD behavior and the dynamics induced by mobility and spatial

correlation.

Although a large number of traffic models have been proposed, limited research

efforts have been devoted to the traffic modeling for the emerging wireless sensor

and actor networks (WSANs). The long-lasting, low-cost, and cooperative nature of

WSANs facilitates a wide range of civilian and military applications such as envi-

ronmental monitoring, industrial control, e-health system, battle field surveillance,

and automatic border patrol. In WSANs, there generally exist two types of nodes:

static sensor nodes, which are deployed in a large area of interests, and mobile actors,

which roam around in this area. The mobile actors can retrieve the sensing data

from different static sensor nodes, exchange the data with other actors, and initiate

certain actions accordingly. Although some traffic models have been proposed for the

conventional wireless sensor networks only consisting of static sensor nodes [13][35],
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none of them can characterize the traffic features of the mobile actors in WSANs.

This fact necessitates the design of new structural traffic models that explicitly cap-

ture the correlation between the unique mobility feature of the actors and their traffic

patterns.

In this work, we reveal the new origins of heavy-tailed traffic by studying the

relationship between the spatial correlation and the temporal dependency [55][52].

Towards this, we propose a novel traffic modeling scheme that captures the statistical

patterns of spatial correlation and mobility. Then, the statistical attributes of the

proposed model are analyzed, which establish the conditions under which user mobil-

ity associated with spatial correlation can lead to heavy-tailed traffic. To mitigate the

bursty nature of heavy-tailed traffic, we propose new traffic shaping protocols based

on mobility coordination to actively shape the traffic so that the resulting traffic can

follow the desired characteristics.

1.2.2 Asymptotic Delay Analysis under Heavy-tailed Environment

Transmission delay, as one of the key QoS metrics, has been widely studied for classical

communication network paradigms. In this work, we provides an asymptotic analysis

of the transmission delay under dynamic spectrum access schemes. Dynamic spectrum

access (DSA) is an emerging technique that allows the secondary users (SUs) to share

the spectrum in an opportunistic manner [2]. Using such scheme, the SUs can access

the unoccupied spectrum during idle periods of the primary users (PUs), and stop

transmissions when the PU channels become busy. The achievable Quality of Service

(QoS) performance of secondary users is significantly affected by the dynamically

changing PU traffic and the resource allocation policies used by the SUs.

We first investigate the delay performance when only a single PU channel is uti-

lized. Specifically, it is shown that DSA induces only light-tailed delay as long as

both the busy time of PU channels and the message size of SUs are light tailed. On
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the contrary, if either the busy time or the message size is heavy tailed, then the

SUs’ transmission delay is heavy tailed. For this case, we prove that if one of the

busy time or the message size is light tailed and the other is regularly varying with

index α, then the transmission delay is regularly varying with the same index α. As

a consequence, the delay has an infinite variance provided α < 2 and an infinite mean

provided α < 1. This implies that even if transmitting messages with finite mean

size, SUs can experience extremely high delay variation and even stochastically zero

throughout. Furthermore, if both the busy time and the message size are regularly

varying with index α and β, respectively, then the tail distribution of the delay is as

heavy as the tail distribution of either the message size or the busy time, whichever

has the smaller index.

Moreover, we investigate the benefits of exploiting the transmission opportunities

on multiple PU channels [57][54]. More specifically, we consider two multiple-channel

access schemes, namely, spectrum mobility and multi-radio diversity. Under spectrum

mobility, if a PU appears in a channel currently used by an SU, the SU vacates the

channel immediately and continues its transmission in another idle channel [2]. Under

multi-radio diversity, an SU is equipped with multiple radio interfaces so that it can

simultaneously access multiple channels. We show that compared with the case in

which only a single channel is used, both spectrum mobility and multi-radio diversity

can mitigate the degree of heavy-tailed delay by increasing the orders of its finite

moments.

1.2.3 Throughout-optimal Scheduling Algorithms under Heavy-tailed Traf-
fic

While transmission delay is a single-user performance metric, stability is a network-

wide one. Generally speaking, a network is stable if there exists a feasible scheduling

algorithm under which each network user has finite time-average expected queue

length [38][48]. Accordingly, the network stability region is defined as the closure
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of the set of all arrival rate vectors for which the queues of all wireless users can be

stabilized by a feasible scheduling policy. Moreover, a scheduling policy is throughput

optimal if it stabilizes the system for any arrival rates in the stability region. Although

network stability regions and throughput-optimal scheduling algorithms have been

investigated in different network scenarios, they are generally derived under light-

tailed channel and traffic models [38][48]. However, recent research on queueing theory

[33] shows that when two queues share the same server under the maximum weight

scheduling algorithm, which is proven to be throughput optimal under light-tailed

traffic arrivals, the queue with light-tailed traffic can experience unbounded average

delay if the other queue has heavy-tailed traffic with unbounded delay variance.

The above observations motivate us to investigate network stability from a new

perspective [58][56]. Specifically, we introduce a new stability criterion, namely mo-

ment stability, which requires that all the network users with light-tailed arrival traffic

always have bounded queueing delay with finite mean and variance. Although mo-

ment stability is a desirable property to promise QoS guaranteed applications, the

conventional scheduling policies, which are effective under the light-tailed traffic, have

difficulty in achieving moment stability in the presence of heavy tails. Consequently,

new scheduling policies, which cope with the heavy-tailed network environment, have

to be developed. Towards this end, we first study the queue length asymptotics under

two basic channel access solutions: the exclusive access policy and the shared access

policy. The former policy allows a SU has exclusive access to the PU channel with-

out competing with other SUs, while the latter policy requires all SUs to share the

PU channel. Based on this study, we reveals the necessary conditions under which

there exists a feasible scheduling policy to achieve moment stability. Accordingly, we

propose the maximum-weight-β scheduling algorithm, which associates each queue

with a different parameter β and makes the scheduling decision based on the queue

lengths raised to the β-th power. In particular, we show that maximum-weight-β
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scheduling algorithm is throughput-optimal in the sense that it can maximize the net-

work throughput, while maintaining moment stability. More specifically, we prove its

throughput optimality by giving an asymptotic queueing analysis, which shows that

there always exists a feasible set of β parameters such that the maximum weight-β

scheduling yields the best asymptotic queueing performance by letting each queue

have the lightest possible tail and consequently the highest possible order of finite

moments.

1.2.4 Mobility Improves Delay-bounded Latency with Heavy-tailed Spec-
trum

Similar to network stability, connectivity is also a network-wide attribute that has to

be maintained for reliable communications between transmitting and receiving parties

in a network. Conventionally, there exist two types of connectivity: full connectivity

and percolation-based connectivity. Specifically, full connectivity ensures that each

pair of nodes in the network is connected by at least one path. However, for wireless

networks, this connectivity criterion is overly restrictive or difficult to achieve because

of the complicated radio environment, unplanned network topology, and severe im-

pacts from coexisting networks. Different from full connectivity, percolation-based

connectivity only requires a network to contain an extremely large connected com-

ponent such that each node in this component can connect with an extremely large

number of other nodes [15] [25][53].

Although percolation based connectivity can characterize the existence of routing

paths between network devices, it does not indicate the end-to-end quality of ser-

vice, such as delay and jitter. We consider a heterogeneous network setting, where

there exist two networks: the primary network and the secondary network, where the

primary network has the priority to access the spectrum. As implied by our delay

and queueing analysis, under heavy-tailed spectrum activities, as the density of pri-

mary users increases, the primary network can generate extremely large interference
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region within which the secondary users will experience significantly degraded delay

performance. Therefore, a latency-oriented connectivity definition is more meaning-

ful. Towards this, we first define a new connectivity criterion, namely delay-bounded

connectivity, which simultaneously ensures the existence of routing paths and the

finiteness of the average delay and jitter along these paths.

In this work, we study the fundamental impact of heavy-tailed spectrum activi-

ties on the delay-bounded connectivity as well as how and to what extent mobility

can mitigate such impact [60][59][53]. More specifically, we show that such heavy

tailed spectrum activities significantly degrade the connectivity of secondary net-

work. Specifically, it is proven that if the busy time of primary users is heavy tail

distributed, there always exists a critical density λp such that if the density of pri-

mary users is larger than λp, the secondary network cannot achieve delay-bounded

connectivity surely. To encounter this problem, the mobility of secondary users is

utilized to exploit the spatial diversity of the spectrum availability through the op-

portunistic contacts of mobile users. In particular, we prove that there exists a

critical threshold on the maximum radius the secondary user can reach, above which

the secondary network can already achieve delay-bounded connectivity, independent

of primary network impact such as node density and activities. Moreover, we study

the latency performance of the mobility-assisted data forward schemes, which shows

that their yielded end-to-end latency scales linearly in the initial distance between

two mobile users.

1.3 Organization of the Thesis

This thesis is organized as follows.

In Chapter 2, we first introduce the mathematical background of heavy tail dis-

tribution and long range dependent traffic. Then, we present and prove some useful

lemmas that are applied throughout the thesis.
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In Chapter 3, we describe our proposed traffic model in details. Then, we analyze

the statistical attributes of the proposed model and establish the conditions under

which user mobility associated with spatial correlation can lead to heavy-tailed traffic.

Then, we propose a mobility-aware traffic shaping scheme that can effectively mitigate

the bursty nature of heavy-tailed traffic.

In Chapter 4, we first give an asymptotic delay analysis of wireless users under

different traffic patterns and spectrum conditions. Based on this analysis, we reveal

the critical conditions under which wireless users can experience heavy-tailed delay

with significantly degraded QoS performance. Then, to mitigate the heavy-tailed de-

lay. we propose two multi-channel multi-radio solutions, including spectrum mobility

and multi-radio diversity, and analyze their delay performance, respectively.

In Chapter 5, we first formally define a new network stability criterion, namely

moment stability. Then, we give an asymptotic queueing analysis to reveal the critical

conditions on the existence of moment stability in presence of heavy tails. Based on

the analysis, we propose the maximum-weight-β scheduling algorithm and prove its

throughput optimality.

In Chapter 6, we first define a new connectivity criterion, namely delay-bounded

connectivity. Then, we reveal the sufficient conditions under which delay-bounded

connectivity is not achievable due to the heavy-tailed nature in the radio spectrum.

Next, we introduce mobility-assisted data forwarding schemes and derive the crit-

ical mobility radius above which delay-bounded connectivity is guaranteed surely.

Moreover, we analyze the end-to-end latency of the mobility-assisted data forward

schemes.

In Chapter 7, we draw the main conclusions and summarize the future work.
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CHAPTER II

HEAVY TAIL DISTRIBUTION AND LONG RANGE

DEPENDENCE

In this chapter, we first introduce the mathematical background of heavy tail distri-

bution and long range dependent traffic. Then, we present and prove some useful

lemmas that are applied throughout the thesis.

2.1 Heavy Tailed Distribution

In this thesis we use the following notations. For any two real functions a(t) and

b(t), we let a(t) ∼ b(t) denote limt→∞ a(t)/b(t) = 1. We say that a(t) . b(t) if

lim supt→∞ a(t)/b(t) ≤ 1, and a(t) & b(t) if lim inft→∞ a(t)/b(t) ≥ 1. Furthermore,

we say that a(t) = o(b(t)) if limt→∞ a(t)/b(t) = 0. In addition, for any two non-

negative r.v.s X and Y , we say that X ≤a.s. Y if X ≤ Y almost surely, and X ≤s.t. Y

if X is stochastically dominated by Y , i.e., P (X > t) ≤ P (Y > t) for all t ≥ 0.

We say X
d
=Y if X and Y are equal in distribution. Also, let F (x) = P (X ≤ x)

denote the cumulative distribution function (cdf) of a non-negative r.v. X. Let

F (x) = P (X > x) denote its tail distribution function.

Definition 1. A r.v. X is heavy tailed (HT) if for all θ > 0

lim
x→∞

eθxF (x) = ∞, (1)

or, equivalently, if for all z > 0

E[ezX ] = ∞. (2)

Definition 2. A r.v. X is light tailed (LT) if there exists θ > 0 such that

lim
x→∞

eθxF (x) = 0, (3)
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or, equivalently, if there exists z > 0 such that

E[ezX ] < ∞. (4)

Remark 1. Generally speaking, a r.v. is HT if its tail distribution decreases slower

than exponentially. Some typical HT distributions include Pareto, log-normal, Bur,

and Weibull (with shape parameter less than 1) distributions. On the contrary, a

r.v. is LT if its tail distribution decreases exponentially or faster. Some typical LT

distributions cover exponential, Gamma, and Weibull (with shape parameter larger

than 1) distributions. A key characteristic that distinguishes HT r.v.s from LT ones

is that the moment generating function of any HT r.v. X is infinite, i.e., E(ezX) =

∞,∀ z > 0.

Based on the existence of the moments, we define the tail index of a non-negative

random variable.

Definition 3. The tail index κ(X) of a nonnegative random variable X is defined by

κ(X) = sup{k ≥ 0 : E[Xk] < ∞}. (5)

Remark 2. The tail index specifies the threshold order above which a random variable

has infinite moments. Some HT distributions, such as Pareto, have finite tail index,

which leads to infinite moments of certain orders, Some HT distribution, such as log-

normal, have infinite tail index and therefore possesses finite moments of all orders.

In this work, we focus on heavy tail distributed random variables with finite tail index

because they can effectively characterize lots of network attributes such as the frame

length of variable bit rate (VBR) traffic, the session duration of licensed users in

WLANs, and files sizes on internet severs [32] [41].

The following Lemma presents the sufficient condition regarding the existence of

finite tail index for a r.v. X [11].
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Lemma 1. A nonnegative r.v. X has κ(X) if and only if the tail distribution of X

satisfies

lim
t→∞

log[P (X > t)]

log t
= −κ(X). (6)

An important subclass of HT distributions is the class of regularly varying dis-

tributions [4]. Its definition involves the slowly varying function which is defined as

follows.

Definition 4. A measurable positive function L(x) defined in some interval [a,∞) is

called slowly varying if for all y > 0

lim
x→∞

L(yx)
L(x)

= 1 (7)

For example, a constant and a logarithmic function are both slowly varying func-

tions.

Lemma 2. (Properties of slowly varying function [4])

1. If L(x) varies slowly, limx→0 log(L(x))/log x = 0.

2. If L(x) varies slowly, so does (L(x))a for every a ∈ R.

3. If L1(x) and L2(x) vary slowly, so do L1(x) + L2(x) and L1(x)L2(x).

Definition 5. A r.v. X is called regularly varying with index α > 0, denoted by

X ∈ RV(α), if

F (x) ∼ x−αL(x), (8)

where L(x) is a slowly varying function.

Remark 3. Regularly varying distributions are a generalization of power law dis-

tributions. The index α indicates how heavy the tail distribution is, where smaller

values of α imply heavier tail. Moreover, for a r.v. X ∈ RV(α), the exact values of

α determine whether the moments of X are bounded or not. This is explained in the

following lemma.
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Lemma 3. For any r.v. X ∈ RV(α), the moments of order m > α is unbounded,

i.e.,

E[Xm] = ∞, ∀m > α. (9)

Remark 4. In particular, for any r.v. X ∈ RV(α), if α < 1, X has an infinite

mean. If 1 < α < 2, X has a finite mean but an infinite variance.

The following preliminary Lemmas regarding regularly varying and light tailed

distributions are also useful in this thesis. We first state the Lemmas, followed by

their proofs.

Lemma 4. Let X ∈ RV(α) and Y ∈ RV(β). If α > β, then

P (X > at) = o(P (Y > bt))

with a > 0 and b > 0.

Lemma 5. Let X and Y be non-negative random variables. If X ∈ RV(α) and

P (Y > t) = P (X > bt) with b > 0, then Y ∈ RV(α)

Lemma 6. Let X be LT and Y ∈ RV(α). Then,

P (X > at) = o(P (Y > bt))

with a > 0 and b > 0.

Lemma 7. Let X and Y be non-negative random variables. If P (Y > t) = P (X >

a(t+ b)) with 0 < a < ∞ and 0 < b < ∞, then Y is LT provided X is LT.

Let {Yi}i≥1 be non-negative i.i.d. random variables independent of the non-

negative random variable N . Define SN :=
∑N

i=1 Yi. We have following Lemma 8

[17] and 9.

Lemma 8. 1. Assume Y1 ∈ RV(α), E[N ] < ∞ and P (N > t) = o(P (Y1 > t)).

Then,

P (SN > t) ∼ E[N ]P (Y1 > t).
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2. Assume N ∈ RV(α), E[Y1] < ∞, and P (Y1 > t) = o(P (N > t)). Moreover,

assume that E[N ] < ∞ if α = 1. Then,

P (SN > t) ∼ P (N > (E[Y1])
−1t).

Lemma 9. Assume N, Y1 ∈ RV(α) with E[N ] < ∞. Let P (N > t) = t−αL1(t) and

P (Y1 > t) = t−αL2(t). Then,

P (SN > t) ∼ E[N ]P (Y1 > t) + (E[Y1])
αP (N > t). (10)

Lemma 10. Properties of LT Distributions [37]

1. If X and Y are non-negative LT random variables, then X + Y is LT.

2. Let {Xi}i≥1 be i.i.d. LT random variables, and N be integer LT random variable.

Then, the random sum
∑N

i=1Xi is LT.

3. Let L be a non-negative random variable and {Xi}i≥1 be non-negative i.i.d.

random variables independent of L and satisfying P (Xi > 0) > 0. If L is LT,

so is inf{n :
∑n

i=1Xi ≥ L}.

2.2 Long Range Dependent Traffic

The traffic is called long range dependent if its autocorrelation function follows a

power-law form as the time lag approaches infinity

ρ(τ) → cpτ
β−1, asτ → ∞

where cp is a positive constant and 0 < β < 1 is the fractal exponent. The quantity

H = (β + 1)/2 is referred to as the Hurst parameter, which characterizes the speed

of decay of the autocorrelation function. Note that LRD traffic has slowly decaying

autocorrelation function with 0.5 < H < 1, since 0 < β < 1. By contrast, the

short-range dependent traffic, e.g., Poisson traffic, has the exponentially decaying

autocorrelation function.
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2.3 Proofs of the Preliminary Lemmas

Proof of Lemma 4 to 7. The proof follows easily from the definitions of LT and HT

r.v.s..

Proof of Lemma 9. We use techniques similar to those used in [17] to prove that the

lower and upper bounds in (10) asymptotically coincide. For every fixed n0 we obtain

P (SN > t) =

n0∑
n=1

P (N = n)P (Sn > t)

+
∞∑

n=n0

P (N = n)P (Sn > t)

Since Y1 ∈ RV(α), Y1 is subexponentially distributed. By the subexponentiality of

Y1 and the independence of N and Y1, we obtain

n0∑
n=1

P (N = n)P (Sn > t) ∼
n0∑
n=1

P (N = n)nP (Y1 > t)

∼ E[N ]P (Y1 > t), n0 → ∞

For any 1 > δ > 0, we obtain for large enough t

∞∑
n=n0+1

P (N = n)P (Sn > t)

=

t(1−δ)/E[Y1]∑
n=n0+1

+
∞∑

n=t(1−δ)/E[Y1]

P (N = n)P (Sn > t)

:=I + II.

For term II, we obtain

II =

 t(1+δ)/E[Y1]∑
n=t(1−δ)/E[Y1]

+
∞∑

n=t(1+δ)/E[Y1]

P (N = n)P (Sn > t)

:=J1 + J2 (11)
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By the law of large numbers and letting δ ↓ 0, we obtain

J1≤
t(1+δ)/E[Y1]∑

n=t(1−δ)/E[Y1]

P (N = n)P (

t(1+δ)/E[Y1]∑
i=1

Yi > t)


∼P

(
N >

t(1− δ)

E[Y1]

)
− P

(
N >

t(1 + δ)

E[Y1]

)
= o(1)

For J2, we have

J2 ≤
∞∑

n=t(1+δ)/E[Y1]

P (N = n) ∼ P

(
N >

1 + δ

E[Y1]
t

)
(12)

and by the law of large numbers,

J2≥
∞∑

n=t(1+δ)/E[Y1]

P (N = n)P

t(1+δ)/E[Y1]∑
i=1

Yi > t


∼P

(
N >

1 + δ

E[Y1]
t

)
(13)

. Combining (12) and (13) and letting δ ↓ 0, we have

J2 ∼ P

(
N >

t

E[Y1]

)
∼ (E[Y1])

αP (N > t) (14)

For term I, we have

I =

t(1−δ)/E[Y1]∑
n=n0+1

P (N = n)P (Sn − nE[Y1] > t− nE[Y1])

Since n < t(1− δ)/E[Y1], we obtain that y := t−nE[Y1] > nE[Y1]((1− δ)−1− 1). By

large deviations theory [6] [36], it follows that for any ε > 0

lim
n→∞

sup
y>εn

∣∣∣∣P (Sn − nE[Y1] > y)

nP (Y1 > y)
− 1

∣∣∣∣ = 0

which implies that there exists some positive constant C such that

lim
n0→∞

lim sup
t→∞

I ≤ lim
n0→∞

C
∞∑

n=n0+1

P (N = n)nP (Y1 > y) = 0

This, in conjunction with (11), (12) and (14), completes the proof.
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CHAPTER III

ON THE NEW ORIGINS OF HEAVY-TAILED TRAFFIC

3.1 Introduction

In the last few years, a significant number of research efforts have been devoted to

the study of developing wide area distributed wireless sensor networks (WSNs) with

self-organizing capabilities to cope with sensor node failures, changing environmental

conditions, and sensing application diversity [3]. In particular, wireless sensor and

actor network (WSAN) emerges as a promising candidate to support self-organizing

mechanisms, enhancing adaptability, scalability, and reliability [5][42][19].

In a WSAN, there generally exist two types of nodes: the static sensor nodes,

which are deployed in a large area of interests; and mobile agents, which roam around

within this area. The mobile agents can retrieve the sensing data from the static sen-

sor nodes, and exchange the data with other mobile agents or transmit the data

directly to the remote sink. Such hybrid network scenario, which is illustrated in Fig-

ure 1, facilitates a wide range of civilian and military applications such as battlefield

surveillance, nuclear, biological and chemical attack detection, and environmental

monitoring [1]. However, the traffic model in WSAN has not been investigated yet.

Conventionally, Markovian or Constant Bit Rate (CBR) traffic model is generally

assumed in WSNs without any discussion as to whether this is appropriate or not.

However, since WSNs are an application specified networking paradigm, different ap-

plications or network scenarios can yield different traffic patterns. For example, the

WSNs, which are used for intrusion detection and medical applications, can gener-

ate traffic significantly different from the conventionally used Poisson or CBR traffic

model [12][12]. Therefore, in this chapter, we aim to investigate the influence of two
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key factors in WSANs, i.e., node mobility and spatial correlation of sensing obser-

vations, on the traffic patterns of the mobile nodes. More specifically, we will study

whether the joint effects of the two factors induce Long Range Dependent (LRD)

traffic because such traffic can lead to fundamentally different impact on network

performance and protocol design, compared with the traditional Markovian traffic

[29][40].

—Recently there has been a great deal of research on 

using  mobility  in wireless sensor  networks  (WSNs) to facilitate 

surveillance   and   reconnaissance   in   a  wide  deployment   area. 

Besides providing  an  extended  sensing  coverage,  node  mobility 

along with spatial correlation introduces  new network  dynamics, 

which could  lead to the traffic  patterns fundamentally different 

from  the traditional (Markovian)  models. In this paper,  a  novel 

traffic modeling scheme for capturing these dynamics is proposed 

that  takes  into  account  the  statistical  patterns  of node  mobility 

and spatial correlation. The contributions made in this paper  are 

twofold:  first,  it is  shown  that  the  joint  effects of mobility  and 

spatial  correlation can  lead  to bursty  traffic.  More  specifically, Fig. 1 H brid network architecture 

Figure 1: Wireless sensor and actor network.

The seminal work of Leland et al. in 1994 [29] established that Ethernet traf-

fic exhibits a property of correlation over many different time scales and suggested

that simple LRD models could be applied to effectively capture these correlations.

Since then, a great number of research efforts have been devoted to the study of LRD

behavior because of the impact of LRD on network performance and resource alloca-

tion, which exhibits characteristics significantly different from Markovian traffic. For

example, LRD traffic can induce much larger delays than predicted by traditional

queuing models. Furthermore, buffering, as a resource allocation strategy, becomes

ineffective with LRD input traffic in the sense of incurring a disproportional penalty

in queuing delay compared with the gain in reduced packet loss probability.

The important consequences of LRD necessitate us to answer the following ques-

tions regarding (1) whether the joint effects of mobility and spatial correlation lead to

LRD traffic, and (2) if the answer is yes, how they affect the Hurst parameter which

is used to measure the intensity of LRD in the traffic. To answer these questions,

we construct an analytical traffic model that incorporates the statistical patterns of
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node mobility and spatial correlation, and study the impact of these attributes on

traffic statistics, which leads to several novel findings [55] [52]. These findings pro-

vide valuable new insights into questions related to the design of efficient and effective

protocols for WSANs. The contributions made in this chapter conclude:

1. An analytical traffic model is proposed whose parameters are related to the

main attributes of WSANs (e.g., mobility and spatial correlation). This model

advances an explicit explanation of the impact of these attributes on the statis-

tical patterns of the network traffic.

2. We find that the joint effects of mobility and spatial correlation can lead to the

pseudo-LRD traffic, whose autocorrelation function approximates that of the

LRD traffic with the Hurst parameter up to a certain cutoff time lag.

3. We show that the Hurst parameter is completely determined by the mobility

variability and the degree of spatial correlation. Particularly, higher mobility

variability and smaller spatial correlation could give rise to the burstier traffic

with larger Hurst parameter. Conversely, lower variance in mobility and larger

spatial correlation can lead to non-bursty traffic.

4. We demonstrate that the traffic at the relay node has the same Hurst parameter

as the single node, but exhibit much more fluctuations per unit time than the

single node traffic.

5. We propose a novel traffic shaping protocol, which can effectively reduce the

traffic burstiness by properly coordinating the movement of the sensor nodes.

The rest of this chapter is organized as follows. In Section 3.2, we introduce

system models. In Section 3.3, we presents the proposed traffic modeling scheme,

investigates the effects of mobility and spatial correlation on the traffic statistics, and
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introduces the traffic shaping schemes using movement coordination. Section 3.4, we

present experimental results.

3.2 System Models

In this section, we present the characteristics of WSANs including node mobility

and spatial correlation, all of which have significant impact on the traffic nature in

WSANs.

3.2.1 Node Mobility

Generally, a WSAN has two types of mobile nodes: robot and human agent. Com-

pared with human agent, the movement pattern of robots could exhibit much more

regularity and predictability because they are either remotely controlled or prepro-

grammed. Since human agent can have a wide range of mobility variability to cover

more scenarios, the mobility patterns of human agent is of interest in this work.

However, as seen in the following sections, the conclusions of this chapter also pro-

vide valuable guidelines on how to design the effective resource provisioning strategy

for WSNs with any type of mobile agents.

The recent seminal work [44] has investigated the human mobility features based

on the real GPS traces. The data reveal that the statistical pattern of human move-

ments can be characterized by a two-state process alternating between pausing and

moving. The distance a human object traveled during the moving state is defined as

flight. The length of a flight is measured by the longest straight line trip from one

location to another that the human object makes without a directional change. The

flight length has been revealed to follow heavy-tail distribution [44]. Accordingly, its

survival function can be expressed by

Fd(x) = P (X ≥ x) =

(
b

x

)α

, x ≥ b (15)

where b ≥ 0 denotes the minimum distance a human agent can travel and α denotes
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tail index. According to [44], the tail index will be close to 1 for the outdoor en-

vironment. In this case, the human mobility will exhibit high variability since the

flight length will drastically fluctuate within a wide range of values over three-orders

of magnitudes (i.e., 1000 meters). This high mobility variability has been shown to

be determined by human intentions to travel from one position to another without

much deviation caused by geographical constraints such as roads and buildings.

3.2.2 Spatial Correlation

Besides node mobility, spatial correlation is another significant characteristic of WSANs.

For typical WSAN applications, the mobile sensor nodes are required to observe the

interested phenomenon at different locations in the field and send the measured data

to the sink(s). The observed phenomenon is usually a spatially dependent continuous

process, in which the measured data have a certain spatial correlation. In general,

the degree of the spatial correlation in the data increases with the decrease of the

separation between two observing locations. To quantify the spatial correlation, the

observations S1, S2, ..., SN at N locations are modeled as an N-dimensional random

vector S = [S1, S2, ..., SN ]
T [8] [50] which has a multivariate normal distribution with

[0, 0, ..., 0]T mean and covariance matrix K with each element defined by

kij =
E[SiSj]

σ2
, i, j = 1, 2, ..., N (16)

kij denotes a correlation function that specifies the correlation model. The correlation

function is nonnegative and decreases monotonically with the distance d(i,j) between

two locations i and j. Correlation models can be categorized into four groups as

Spherical, Power Exponential, Rational Quadratic, and Matern [50]. Each of them

characterizes the properties of different physical phenomena
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3.3 Spatial Correlation and Mobility Aware Traffic Model-
ing

In this section, we propose a structural traffic modeling scheme, which aims to mimic

the typical behavior of the mobile node. This scheme is favored because it yields a

traffic model whose parameters are related to the traffic generating mechanism and the

main attributes of the network (e.g., mobility and spatial correlation). Consequently,

it could provide insight into the impact of network design parameters and control

strategies on the pattern of the generated traffic. In the rest of this section, we first

abstract the behavior of the mobile agent, and then the corresponding traffic model

is presented. Based on the proposed model, the statistical analysis is given, and the

traffic shaping schemes are proposed.

3.3.1 Single Mobile Node Traffic

In a WSAN, the behavior of the mobile sensor node can be described by a procedure

having two phases: sensing phase and transmitting phase. During the sensing phase,

the node moves to a location, executes sensing tasks, and performs in-network data

compression. During the transmitting phase, the compressed data are sent at certain

rate using suitable transmission mechanisms. This node behavior implies that the

transmission pattern of the node can be naturally characterized by a two-state process

that alternates between transmission and silence. According to this abstracted node

behavior, we utilize ON/OFF process X(t) to model the single-node traffic, which

alternates between two states: the ON state, during which the source transmits data

at a rate r; and the OFF state, during which the source is silent. Let τa(i) and τb(i)

denote the duration of the ith ON state and the ith OFF state, respectively. The

traffic generated by a single sensor node, versus time, can be mathematically modeled

as

X(t) =
∞∑
n=0

r[T (n),T (n)+τa(n+1))(t), t ≥ 0, (17)
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where T (n) denotes the time of occurrence of the nth ON period, i.e.,

T (n) = T (0) +
n∑

i=1

(τa(i) + τb(i)), n ≥ 1

and r[T (n),T (n)+τa(n+1)) is the indicator function, which is equal to r only for t ∈

[T (n), T (n) + τa(n+ 1)).

To completely characterize this model, the distributions of the ON and OFF

periods need to be specified. The distribution of OFF period is affected by the specific

sensing operation parameters, such as the sensing time and the information processing

time. To generalize the analysis, it is assumed that the OFF period follows any

survival function, denoted by Fτb(x) . The ON state distribution, denoted by Fτa(x)

, depends on the amount of data transmitted at each sensing location. This quantity

is closely related to on the statistical features of mobility and spatial correlation.

Let V denote the file required to be transmitted during an ON period. The length

of the ON period τa is simply the time to transmit the file using a certain rate r, i.e.,

τa = V/r. (18)

It is evident that the time for data transmissions depends on the date rates of the

specific sensor platforms. For example, the crossbow MICAz nodes equipped with

802.15.4 transceiver modules can achieve up to 250 kps date rate. On the contrary,

the crossbow stargate nodes, which leverage 802.11 transceiver modules, can support

up to 11Mps date rate. Without loss of generality, we utilize the constant data rate,

e.g., r = 1. In this case, the distribution of the ON period length only depends on

the distribution of the file size. To obtain the file-size distribution, we first express

the file size V in terms of a set of variables related to the network attributes, e.g.,

spatial correlation and mobility. Then, the probability density function (PDF) of V

is derived based on the distributions of these relevant variables.

After the sensor network is deployed, each static sensor node can collect a large
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number of sensing samples as time proceeds, and then treats n consecutive sensing

samples as an event. To preserve the limited memory spaces of the sensors, each sensor

is only required to store the smallest collection of events, which has probability nearly

one. More specifically, given a predefined small value δ, each sensor only stores the

event e that occurs with probability P (e) satisfying

2−n(H(S)+ε) ≤ p(e) ≤ 2−n(H(S)−ε), (19)

where H(S) is the entropy of the observation S. Accordingly, by the asymptotic

equipartition property (AEP) theorem, the collection C of such events has probability

nearly 1, that is,

p(C) =
∑
e∈C

p(e) > 1− ε. (20)

As ε is made arbitrarily small, the total number of events in the collection C, i.e.,

the cardinality of C, approximates

|C| =2nH(S). (21)

Obviously, nH(S) bits are sufficient for indexing the events in the collection C. Besides

these bits, extra bits are required for conveying more information, such as the node

identifications and the location information of the sensors. Therefore, we assume

that the constant number B of bits is used to represent each event. Without loss of

generality, we let B = 1. Accordingly, the total file size for all events in the collection

C approximates

V = 2nH(S). (22)

After each movement, a mobile agent retrieves the event information from the closest

static sensor node. Intuitively, the spatial proximal static sensor nodes trend to

detect and record the same events at the same time instances. Consequently, after

each movement, a mobile agent needs to collect and report the previously undetected

events, i.e., the events that are different from the ones detected at previous location.
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More specifically, thanks to the spatial correlation, for a typical event detected at

previous location j, at most 2nH(Si|Sj) new events can occur at current location i,

where H(Si|Sj) is the entropy of the observation Si given the observation Sj. Thus,

the number of these new events V reported by the mobile agent at current location

is a function of conditional entropy, which is expressed by

V = 2nh(Si|Sj) = 2n(h(SiSj)−h(Sj)). (23)

Specifically, differential entropy h(Si) is used instead of discrete entropy H(Si) be-

cause the observed phenomenon S is generally a continuous random process. Note

that differential entropy differs from discrete entropy by only a constant if the samples

are quantized with an identical and sufficient small quantization step. This constant

only affects the resolution of quantization and the packet size, but does not change

the resulting amount of samples to be transmitted. The file size V in equation (19)

can be evaluated by adopting the power exponential correlation model, which is a

commonly used model in the WSN studies due to its capability of characterizing a

wide range of phenomena [50]. The correlation function of the adopted model is

expressed by

k = e−(θ1d)
θ2

, (24)

where d is the mutual distance of two locations. The parameters θ1 and θ2 control the

correlation level within a given distance d. As a general rule of thumb, smaller value

of θ1 or θ2 indicates higher level of correlation. Based on the above spatial correlation

model, the joint entropy of Si and Sj is given by

h(SiSj) =
1

2
log (2πeσ2)2|K|, (25)

where K is covariance matrix and |K| is the determinant of K. That is,

K =

 1 e−(θ1dij)
θ2

e−(θ1dij)
θ2

1

 (26)
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Inserting the equation (25) into (19) leads to the closed expression regarding the size

of a file conveyed in an ON period

V = Vmax(1− e−2(θ1d)
θ2
)
n
2 , (27)

where Vmax = (2πeσ2)n/2 is the maximum file size, which depends on the properties

of the physical phenomenon, e.g., variance σ, and d is the traveled distance or the

flight length in the preceding OFF period. Equation (27) shows that for a given

phenomenon of interest, the file size distribution depends on the distribution of the

flight length defined in (1). Accordingly, the survival function of the ON period length

is given by

Fτa(x) = (21/θ2bθ1)
α(ln(

x2/n
max

x2/n
max − x2/n

))−α/θ2 , (28)

where x ∈ [xmin xmax], xmin =
(
2πeσ2(1− e−2(θ1b)

θ2
)
)n/2

, and xmax = (2πeσ2)n/2.

Assuming the minimum file size of one and the unit transmission rate (r = 1)

yields the simplified form of the survival function of the ON period length

Fτa(x) = (ln
x
2/n
max

x
2/n
max − 1

)α/θ2(ln
x
2/n
max

x
2/n
max − x2

)−α/θ2 . (29)

Equation (29) shows that the distribution of the ON period length is determined

by two factors: the degree of spatial correlation, e.g., θ2, and mobility variability, e.g.,

α. Larger θ2 or α indicates smaller degree of spatial correlation or smaller mobility

variability. To facilitate further analysis, we define characteristic index as

β =
α

nθ2
. (30)

This index β reflects the joint effect of mobility and spatial correlation that has direct

impact on the traffic patterns.

3.3.2 Statistical Analysis

In this section, we derive the autocorrelation function of the single node traffic. Partic-

ularly, we investigate the inherent relationship between the autocorrelation function
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and network attributes, such as mobility and spatial correlation. The revealed re-

sult could point us in new directions for designing efficient and effective protocols for

WSANs. These protocols are briefly introduced in the next section.

Before evaluating the autocorrelation function, we first investigate the properties

of the ON period length, which have a profound impact on the characteristics of the

autocorrelation function.

Proposition 1. If the characteristic index β < 1, then the length of the ON pe-

riod follows a power law probability density with tail index γa ≈ 2β < 2 within the

characteristic region x ∈ [xminx
∗], where

x∗ = (2πeσ2R∗)n/2 (31)

and

R∗= arg{R| R

(R− 1) ln(1−R)
=

1

β
} (32)

Proof. According to equation (29), we can express the tail index as

γ(x) =
d log F̄ (x)

d log(x)
=

2βx2/n

x
2/n
max − x2/n

/ ln(
x
2/n
max

x
2/n
max − x2/n

) (33)

Equation (33) indicates that the tail index is a function of time x. It is easy to show

that γ(x) is an increasing function with respect to x because the derivative of the

function κ(x, β) with respect of x is larger than 0

dγ(x)

dx
= 2x(x2/n

max − x2/n)

(
ln

x
2/n
max

x
2/n
max − x2/n

)−2

≥ 0 (34)

Therefore, we can obtain the minimum tail index γmin within the region x ∈

[tmin tmax] by evaluating γ(x) at tmin. By letting t = 2θ1b
θ2 , we have

γmin = γ(tmin) =
2β(1− e−(θ1b)θ2 )

e−(θ1b)θ2 (θ1b)θ2
=

2β(1− e−t)

e−tt

≈ 2β(1 + t− 1)

t
= 2β
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The above approximation holds when t is small, which is the case in the considered

network scenario. More specifically, the value of t is determined by θ1, θ2, and b. θ1

and θ2 control the correlation degree within a given distance. In general, θ2 ∈ (0, 2]

and θ1 < 0.1 are used to model the spatial correlation of the physical event information

[50]. On the other hand, b is the minimum traveled distance of the mobile agent.

According to [44], this parameter is generally less than 10 m. As a consequence,

t = 2θ1b
θ2 can approach a small value and thus Equation (35) holds.

Therefore, by (35), if β < 1, then γmin < 2. Since γ(x) is a increasing function,

this implies that there exists a region of x ∈ [xmin x∗] with the tail index γ(x) ≤ 2.

Therefore, we have the upper bound x∗ as follows

x∗ = arg{x|γ(x) = 2} (35)

To determine the upper bound t∗, we define R = (x/xmax)
2/n and simplify γ(x) in

(33) as

γ(x) =
2βR

(R− 1) ln(1−R)
(36)

Let equation (36) be equal to 2. We can obtain R∗ as a function of β, i.e.,

R∗= arg{R| R

(R− 1) ln(1−R)
=

1

β
}

. According to (35), we obtain the upper bound

x∗ = (2πeσ2R∗)n/2 (37)

Based on numerical results, it is easy to show R∗ decreases as β increases. More

specifically, R∗ ≈ 0.7 for β = 0.5, while R∗ approaches 0 as β approaches 1.

Remark 5. Proposition 1 shows that the distribution of the ON period length displays

different behavior within different regions. If x ∈ [tmin tmaxR], then the survival

function decays slowly. The decay speed is completely controlled by β or the joint
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effects of spatial correlation degree (α) and mobility variability (θ2). By contrast, the

survival function of the ON period length decays fast if x > tmaxR. This implies that

the ON period distribution can be closely approximated by a mixture model.

Proposition 2. If correlation index β < 1, the Fτa(x) can be approximated by mixture

Pareto-exponential distribution.

F ∗
τa(x) =



1

(k)γax−γa

µe−λx

0

0 ≤ x < k1

k1 ≤ x < k2

k2 ≤ x < k3

x ≥ k3

(38)

where γa < 2. k1 = xmin and k3 = xmax indicate the lower and upper bounds of

the possible length of the ON period, respectively. k2 = x∗ is upper bound of the

characteristic region defined in Proposition 1.

Proof. Proposition 1 shows the survival function of the ON period length follows

power law form with the tail index γa = 2β in the region tmin < x < tmaxR. In this

case, the survival function can be characterized by Pareto distribution, which is given

by

F̄ ∗
τa(x) = (

k1
x
)
γa

, x ∈ [k1 k2] (39)

where k1 = xmin and k2 = x∗. In addition, Proposition 1 points out if x > tmaxR, then

the tail index is always larger than 2. This means the survival function in this region

decays much faster than the heavy tail distribution. Thus, exponential distribution

can be used to approximate the survival function within the region x∗ < x < tmax.

That is,

F̄ ∗
τa(x) = µe−λx, x ∈ [k2 k3] (40)

where k2 = xmaxR and k3 = xmax. The exponent λ can be obtained by the exponent

index function of F̄τa(x), which is given by

ϑ(x, β) =
d log F̄τa(x)

dx
(41)
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Since the initial point of the exponential distribution is located at (k2, F̄τa(k2)), then

the parameters λ and µ can be given by

λ = ϑ(k2) (42)

and

µ = F̄τa(k2)e
ϑ(k2)k2 (43)

Remark 6. Proposition 2 states that the ON period length follows power law (hy-

perbolic) form within the region xmin < x < x∗. Obviously, if xmax is large enough,

then ON period length approaches heavy tail distribution, which actually character-

izes the zero frequency behavior. However, due to the boundary of xmax, the middle

frequency behavior of the single node traffic is of interest, which is further explained

in Proposition 3.

Based on the approximated survival function defined in (38), we proceed to derive

the autocorrelation function of the single node traffic. To express the result in a closed

form, we need to specify the survival function of the OFF period. To generalize

the analysis, we assume that the OFF period follows Pareto distribution so that

OFF period can exhibit a wide range of variability by adjusting the corresponding

parameters. The PDF of the OFF period τb is expressed by

fτb(x) = γb
mγb

x(γb+1)
(44)

where m denotes the minimum OFF time and γb denotes the tail index which controls

the variability of OFF interval. Values of γb smaller than unity induces OFF durations

with infinite mean, whereas values of γb exceeding two ensure finite variance. In the

range of 1 < γb < 2, the OFF period lengths have finite mean but exhibit wild

variation about that mean as a result of the infinite variance in that range. In sum,

the variability of OFF period increases as γb decreases. In addition, to simplify the
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analysis, we consider the case in which the OFF period is dominated by the time

for sensing and information processing, thus implying that the OFF and ON period

lengths are independent. To obtain the autocorrelation function, we first investigate

the properties of the power spectrum density (PSD).

Proposition 3. If 0.5 < β < 1 and τb > 2, the power spectrum density S(f) of X(t)

exhibits power law decay behavior with fractal exponent 2−2γa in mid-frequency range

k−1
2 ≪ f ≪ k−1

1 .

Proof. (1) Mid-frequency approximation. Based on the power spectrum density of an

ON/OFF process with unit amplitudes and arbitrary distributions of ON and OFF

period lengths [31], the power spectrum density of the random process defined by

(17) is given by

S(ω) = r2E[X(t)]δ(
ω

2π
)

+
2r2(ω)−2

E[τa] + E[τb]
Re

{
[1− φτa(ω)][1− φτb(ω)]

1− φτa(ω)φτb(ω)

}
(45)

where φτb and φτb are the characteristic functions associated with the distributions

for ON period length τa and off period length τb, respectively. Based on the survival

function of τa given in equation (38), we can get the characteristic function of τa given

as

φτa(ω) =

∫ k2

k1

e−jωxγa
kγα
1

xγa+1
dx

+

∫ k3

k2

e−jωxµ(λe−λx + δ(x− k3)e
−λk3)dx

= γa(jωk1)
γa

∫ jωk2

jωk1

e−xx−(γa+1)dx

+
λµ

jω + λ
e−(jω+λ)k2 +

jωµ

jω + λ
e−(jω+λ)k3

(46)
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Since k−1
3 < k−1

2 ≪ f ≪ k−1
1 , we have k1/k2 → 0, ωk2 → ∞, and ωk3 → ∞. Let

jωk1 = z, we can obtain

1− φτa(ω) = γa(jωk1)
γa

∫ jωk2

jωk1

(1− e−x)x−(γa+1)dx

+(
k1
k2

)γa +
λµ

jω + λ
e−(jω+λ)k2

+
jωµ

jω + λ
e−(jω+λ)k3

→ γa(jωk1)
γa

∫ ∞

jωk1

(1− e−x)x−(γa+1)dx

= γaz
γa

∫ ∞

z

(1− e−x)x−(γa+1)dx

(47)

Since 0.5 < β < 1, we have 1 < γ < 2. Then, the expansion of above integration

around the origin of z is given by [31]:

Q(x) = γaz
γa

∫ ∞

z

(1− e−x)x−(γa+1)dx

→ γa
γa − 1

z − (γa − 1)−1Γ(2− γa)z
γa (48)

We therefore obtain the characteristic function of τa

φτa(ω) → 1− ς1jω + ς2(jω)
γa (49)

where

ς1 =
k1γa
γa − 1

, ς2 = (γa − 1)−1Γ(2− γa)k
γa
1 (50)

Because the OFF period length τb follows Pareto distribution with minimum value

of m and the tail index γb > 0, following the same procedures as above, we can obtain

the characteristic function of τb given as

φτb(ω) =

∫ ∞

m

e−jωxγb
mγb

xγb+1
dx

→ 1− ρ1jω + ρ2(jω)
γb (51)
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where

ρ1 =
mγb
γb − 1

, ρ2 = (γb − 1)−1Γ(2− γb)m
γb (52)

Inserting equations (49) and (51) into (45), the latter part of the second term of

(45) becomes

Ω(ω) = Re

{
[1− φτa(ω)][1− φτb(ω)]

1− φτa(ω)φτb(ω)

}
= Re

{
ς1ρ1ω

2 − ς2ρ1(jω)
γa+1 − ς1ρ2(jω)

γb+1

(ς1 + ρ1)jω − ς2(jω)γa − ρ2(jω)γb

}
= −

ς2ρ
2
1 cos(

π
2
γa)

(ς1 + ρ1)2
ωγa −

ρ2ς
2
1 cos(

π
2
γb)

(ς1 + ρ1)2
ωγb

(53)

Based on the survival function of τa given in equation (38), we can obtain the

mean of τa

E[τa] =

∫ k2

k1

γax
kγa
1

xγa+1
dx

+

∫ k3

k2

xµ(λe−λx + δ(x− k3)e
−λk3)dx

=
γa

γa − 1
(k1 − k2(

k1
k2

)γa)

+(k2µ+
µ

λ
)e−λk2 − µ

λ
e−λk3 (54)

Based on the survival function of Pareto distribution, we can obtain the mean of

τb

E[τb] =
γa

γa − 1
m (55)

Inserting equations (53), (54), and (55) into (45), we can obtain the mid-frequency

approximation of the power spectrum density with k−1
2 ≪ f ≪ k−1

1

S(ω) = C1ω
γa−2 + C2ω

γb−2 (56)

where

C1 = −
2(γa − 1)−1Γ(2− γa)k

γa
1 ( mγb

γb−1
)2r2 cos(π

2
γa)

(E[τa] + E[τb])(
k1γa
γa−1

+ mγb
γb−1

)2
(57)
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and

C2 = −
2(γb − 1)−1Γ(2− γb)m

γb( k1γa
γa−1

)2r2 cos(π
2
γb)

(E[τa] + E[τb])(
k1γa
γa−1

+ mγb
γb−1

)2
(58)

Because τb > 2 and τa ≈ 2β < 2, the spectrum density has a fractal exponent 2− 2β

in mid-frequency.

(2) High-frequency approximation. If ω → ∞, we can obtain the characteristic

functions of ON and OFF periods, respectively,

φτa(ω) → 0;φτb(ω) → 0

Inserting above equations into (45), we can obtain the asymptotic form of the

power spectrum density in the high-frequency limit

S(ω) =
2r2(ω)−2

E[τa] + E[τb]
(59)

(3) Low-frequency approximation. If ω → 0, we can obtain the characteristic

functions of ON and OFF periods, respectively,

φτa(ω) → 0;φτb(ω) → 1− ρ1jω + ρ2(jω)
γb

Inserting above equations into (45), we can obtain the asymptotic form of the

power spectrum density in the low-frequency limit

S(ω) =
2r2(ω)−2

E[τa] + E[τb]
Re {1− φτa(ω)}

=
−2r2(γb − 1)−1Γ(2− γb)m

γb cos(π
2
γb)

E[τa] + E[τb]
ωγb−2

(60)

Remark 7. Proposition 3 states that the spectrum density follows power law form

in mid-frequency. According to the relationship between spectrum density and au-

tocorrelation, we can obtain the hyperbolic autocorrelation function within a certain

region.
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Proposition 4. If 0.5 < β < 1 and τb > 2, the autocorrelation function of the process

X(t), denoted by Rm(τ), follows the power law form

R(τ) = D1t
1−γa +D2t

1−γb

in the region xmin ≪ |τ | ≪ xmaxR with some constants D1 and D2. And the corre-

sponding Hurst parameter is given by

H ≈ 3− 2β

2

Proof. Based on the relationship between the PSD of a real-valued process and its

autocorrelation, we obtain the autocovariance CX(t) based on the PSD given by (56)

CX(t) = RX(t)− E2[X(t)]

= 2

∫ ∞

0+
S(f) cos(2πft)df

= C1π
−1t1−γa

∫ ∞

0

xγa−2 cos(x)dx

+C2π
−1t1−γb

∫ ∞

0

xγb−2 cos(x)dx

=
(γa − 1)−1kγa

1 ( mγb
γb−1

)2r2

(E[τa] + E[τb])(
k1γa
γa−1

+ mγb
γb−1

)2
t1−γa

+
(γb − 1)−1mγb( k1γa

γa−1
)2r2

(E[τa] + E[τb])(
k1γa
γa−1

+ mγb
γb−1

)2
t1−γb (61)

The power law form of autocovariance (61) implies that the single node traffic has

the Hurst parameter

H =
3−min(γa, γb)

2
≈ 3−min (2β, γb)

2
(62)

Since β < 1 and γb > 2, we obtain

H ≈ 3− 2β

2
(63)
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Remark 8. Proposition 4 suggests that the joint effects of mobility and spatial corre-

lation can lead to pseudo LRD traffic, which has power law autocorrelation function

with the Hurst parameter up to the cutoff time lag x∗. This result is important because

when xmax is large enough, pseudo LRD traffic exhibits the similar behavior as the

LRD traffic, thus demanding the similar resource allocation approaches. In addition,

Proposition 4 shows that index β completely controls the value of the Hurst parameter

and thus has direct impact on the burstiness of the traffic from each mobile sensor

node. This means that the network traffic can exhibit different degree of hurstiness

under different monitored environment (e.g., spatial correlation) and node behavior

(e.g., mobility variability).

3.3.3 Relay Node Traffic Model

Relay Node Traffic Model Because of the nature of ad hoc communication in

WSANs, some nodes will act as the relay points responsible for forwarding traffic for

other nodes. For certain relay nodes, there may exist several routes passing through

them, each route corresponding to a traffic flow originating from other node. Thus,

at each relay node, the traffic flow is the aggregation of all the flows that need to be

forwarded. The number of flows actually traversing the relay node is changing over

time due to the time-varying topology induced by the mobility nature of WSANs.

Suppose within a certain time interval T each forwarding flow passes through the relay

node with an identical probability of Pt, which is called the traversing probability.

Then, the traffic on the relay node, denoted by S(t), becomes the sum of all the active

traffic flows during a certain time interval T , i.e.,

S(t) =
N∑

n=1

Xn(t), (64)

where Xn(t), i = 1...N denotes the active traffic flows, which are independent iden-

tically distributed (i.i.d.). Suppose the maximum number of flows a relay node can
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forward is M . Then, it can be shown that N follows binomial distribution. In addi-

tion, the autocorrelation function of relay node traffic can display power-law behavior

as a result of the independence of the traffic active flows and the properties of iterative

mean, which is explained in the following proposition.

Proposition 5. The traffic at relay node has Hurst parameter H ≈ 3−2β
2

in the region

xmin ≪ t ≪ x∗ with the scaled autocovariance function of the single flow traffic, i.e.,

CS(τ) = MPtCX(τ) +M(Pt − Pt
2)E2[X(t)], (65)

where CS(τ) and CX(τ) are the autocovariance function of the relay node traffic S(t)

and single node traffic X(t), respectively, and M is the maximum number of flows a

relay node can forward, which is determined by system parameters such as bandwidth.

Proof. Taking advantage of the independence of the active flow traffics and the prop-

erties of iterative mean, we can obtain

RS(τ) =E[
N∑
i=1

Xn(s)
N∑
j=1

Xm(s+ τ)]

=E[E[
N∑
i=1

Xn(s)
N∑
j=1

Xm(s+ τ)|N ]]

=E[
N∑
i=1

{
E[Xn(s)Xn(s+ τ)|N ]

+
K∑
i ̸=j

E[Xn(s)Xm(s+ τ)|N ]

}
]

=E[NRX(τ) +N(N − 1)E2[X(t)]]

=MPtRX(τ) + (M2Pf −MP 2
t )E

2[X(t)] (66)

Based on the relationship between autocorrelation and autocovariance, we obtain

CS(τ) =RS(τ)− E2[X(t)]

=MPtRX(τ) + (M2Pt −MP 2
t )E

2[X(t)]− E2[S(t)]

=MPtCX(τ) +M(Pt − Pt
2)E2[X(t)] (67)
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where CX(τ) is the autocovariance of a single traffic flow. Equation (67) indicates

that the aggregated traffic on the relay node has the scaled autocovariance of the

single traffic flow. In addition, since the variance of S(t) is given by

V ar[S(t)] = MPtσ
2
X (68)

we obtain the autocorrelation function of S(t) which has the some form as single flow

traffic X(t)

ρS =
CS(τ)

V ar[S(t)]
≈ CX(τ)

V ar[X(t)]

when τ is large. Therefore, the relay node traffic has the same Hurst parameter

H ≈ 3−2β
2

as the single flow traffic.

Proposition 5 states that the statistics of relay node traffic closely resemble those

of the traffic originating from a single user. Because the aggregated traffic exhibits

all of the transitions occurring within each individual traffic flow passing through the

relay node, the traffic on the relay node exhibits MPt times more fluctuations than

each of the traversing traffic flow.

3.3.4 Useful Findings and Intuitive Explanations

Based on the statistical analysis given above, we have two major findings. First,

higher mobility variability (smaller α) along with smaller spatial correlation (larger

θ2) could lead to more bursty traffic (higher H). Second, the joint effect of the

mobility and correlation could lead to non-bursty traffic (e.g., H = 0.5) if a certain

condition holds (e.g., β = 1). The intuitive explanation for these findings is that

both higher mobility variability and smaller spatial correlation encourage larger file

sizes, thereby increasing the tail weight of the size distribution. This in turn leads to

more chance to have burst transmissions. Therefore, it can be seen that the traffic

burstiness actually arises from the joint effect of node mobility and spatial correlation

on the file size, which can be explained as follows. Higher mobility variability indicates
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higher probability that a node travels a long distance, which means the observation

at current location has little correlation with the previous location. Therefore, at

current location the sensor node has to transmit a large data file consisting of almost

all the gathered information(e.g., images and videos). On the other hand, small

spatial correlation implies that the sensing data retrieved at current location may be

completely different from the proximal location. As a result, the sensor node may

also need to send a large file of data even through it only travels a short distance. In

sum, higher mobility variability along with smaller spatial correlation could lead to

higher probability for a node to transmit a large file, thereby resulting in more chance

for burst transmissions.

3.3.5 Mobility-aware Traffic Shaping Protocol

The above novel findings provide valuable insights into the design of traffic engineer-

ing solutions for WSANs. Instead of passively observing the traffic and designing

the resource allocation schemes accordingly, new traffic shaping protocols can be pro-

posed to actively shape the traffic so that the resulting traffic can follow the desired

characteristics. Then, the existing traffic management schemes can be directly em-

ployed accordingly. In our case, because of the direct connection between the mobility

pattern and the traffic attributes, we can effectively reduce the burstiness of traffic

flows by adaptively coordinating the movement of the sensor nodes so that the proto-

cols designed for SRD traffic can be employed in more dynamic network environment.

More specifically, according to Proposition 4 and 5, the best effort to reduce the traf-

fic burstiness is to let each mobile node move evenly in the sensing area so that the

resulting Hurst parameter is minimized by maximizing α. To show the effectiveness

of this mobility-aware traffic shaping scheme, we next investigate the queueing per-

formance on the relay node and demonstrate how the proposed scheme simplifies the

resource provisioning strategy.
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It is easy to prove that if the number of the traversing flows on the relay node

is large enough, then the relay node traffic, defined in (64), converges to a fractional

Gaussian process. Accordingly, the aggregate cumulative packet traffic follows frac-

tional Brownian motion, which result in Weibull-like asymptotic tail probabilities for

queue-length distribution [10], i.e.,

P (Q > x) ≈ exp(−δb2−2H) (69)

where δ is a constant and Q is the steady-state queue length of the relay node. It

is shown in [23] that the slowly decaying tail probabilities given in (69) can result in

the ”buffer ineffectiveness” phenomenon, in which increasing the buffer sizes beyond a

certain value results in only a slight decrease in loss rates. The conventional approach

to solve this problem is to employ the resource provisioning scheme that exploit

the small buffer capacity along with large bandwidth. This scheme can effectively

curtail the influence of LRD traffic on the queueing performance. However, for the

bandwidth-constraint WSANs, this strategy is infeasible. In this case, selecting the

proper traffic shaping protocols to reduce traffic burstiness facilitates the design of

effective resource provisioning strategies.

Specifically, the distance the mobile nodes will travel can be controlled to follow

any distribution with low variability such as the exponential distribution Fd(x), e.g.,

Fd(x) = exp(−λx), (70)

where 1/λ is the average flight length and the survival function of the ON period

length with unit transmission rate can be expressed by

Fτa(x) ≈ exp(−ηx
2
θ2 ) x ≥ 0, (71)

where η is a constant. Equation (71) indicates that the length of the ON period

does not follow heavy-tail distribution because it decays faster than exponentially.

As shown in [21], if the arrival process is a single ON/OFF source in which the
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ON periods are exponentially distributed, then the queue length distribution decays

exponentially. This observation implies that the simple buffering scheme for SRD

traffic can be effectively applied.

3.4 Performance Evaluation

Validating the ON/OFF model for single node traffic We carry out the

experiments in a large-sale simulated sensor network deployed in a large monitoring

region. All the settings of this network are configured according to above mentioned

hybrid network scenario. The actual traffic traces are first collected from this network.

Then, we synthesize traffic traces based on the proposed traffic model and show that

the synthesized traffic fits the actual traffic. The actual traffic is generated by a

mobile agent, which moves around within an experiment region of 5000*5000. The

measurements at each location in this region are generated according to the two-

dimensional Gaussian random field with the power exponential correlation coefficient,

zero mean and 1 covariance. The static sensor nodes first discretize the continuous

measurement by encoding it with one of the 7 symbols. Each symbol corresponds

to one of the 7 regions including (−∞,−2.5), [−2.5,−1.5), [−1.5,−0.5), [−0.5, 0.5),

[0.5, 1.5) , [1.5, 2.5), and [2.5,∞). Then, the static sensor node assembles 5 consecutive

encoded measurements as an event and store all the events locally. Next, the mobile

agent initiates its movement according to the human mobility model, that is, for each

movement its actual traveled distance is drawn from the heavy tailed distribution with

α = 0.75. After each movement, the mobile node retrieves the interested events from

the closest static sensor node. In this case, the interested events at current location are

the new events that occur at the same time as the events the most frequently detected

at the previous location, but have different values or encoded symbols. In Figure 2,

we show the volume of the actual traffic measured during each transmission period.

Since constant transmission rate is adopted, the traffic volume actually indicates the
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length of the transmission period. The corresponding CCDF and tail index estimate

of the transmission periods are shown in Figure 3, respectively. The tail index is

estimated through linear regression in the log-log CCDF plot. The linearity in this

figure indicates that the actual traffic traces are indeed heavy tail distributed. Figure

4 depicts the synthesized traffic using the proposed ON/OFF model. The tail index a

of the proposed model is obtained through the tail index estimate of the actual traffic

traces. We observe that the outlooks of the two traces are very similar, i.e., they are

impulsive. The straight line in the tail index estimate plot in Figure 5 clearly shows

that the synthesized traffic is heavy tailed distributed.
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Figure 2: Actual single user traffic.
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Figure 3: Tail index estimate for actual traffic
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Figure 4: Synthesized single user traffic.
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Figure 5: Tail index estimate for synthesized traffic
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LRD Behavior in Single Node Traffic Long-range dependence manifests itself

either in time-domain with the power-law decay of the autocorrelation or in spectral

domain with the power-law singularity of the spectral density at zero frequency. Here,

we investigate the corresponding power spectrum density (PSD) in the mid-frequency

range because the single node traffic is expected to exhibit pseudo-LRD behavior if the

characteristic index β < 1. Figure 6 gives a rough estimate of PSD of the simulated

single user traffic based on the single trace measurement with 10000 sampling points.

PSD in Figure 6 shows a trend of power-law decay especially in the low-frequency

domain, which indicates the possible presence of long-range dependence. To eliminate

the deviation, Figure 7 shows the averaged PSD based on the results from 50 trace

measurements and Figure 7 clearly shows the power-law decay of the PSD, which

has a straight line with slope 0.8 in the mid-frequency range from one rad to the

order of magnitude of 10−3 rads. According to the relationship between PSD and

autocorrelation, this observation indicates that the corresponding autocorrelation also

exhibits power-law behavior. This observation is expected because according to the

simulation settings, the correlation parameter β is less than one. Under this condition,

Proposition 2 points out that the autocorrelation of the single node traffic obeys a

power law in middle frequency, which indicates pseudo-LRD traffic. To determine

the Hurst parameter, we employ a periodogram-based analysis. According to this

analysis, an estimate of 1 − 2H is given by computing the slope of a regression line

of the periodogram plotted in the log-log grid. Figure 8 depicts the periodogram of a

single trace used in Figure 7. The periodogram plot shows a slope of 0.7376, yielding

an estimate of H as 0.8683. The estimated H closely approximates the theoretical

H = 0.9.

LRD Behavior in Relay Node Traffic Next, we test the long-range dependence

of the traffic at relay node. We assume the traversing probability is one, which means
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Figure 6: Single node estimated PSD.
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Figure 7: Single node averaged PSD.
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Figure 8: Single node Periodogram.
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that each flow in the network is active all the time. The maximum number of flows

the relay node can support is set to be 20. Figure 10 compares the aggregated traffic

at the relay node with a single flow traffic in terms of PSD. It can be seen that the

PSD of the traffic at the relay node closely resembles that of the single flow traffic

except that the PSD of the aggregated traffic is 20dB higher than that of the single

flow traffic. From the modified periodogram depicted in Figure 9, it can be noticed

that the aggregated traffic has the same Hurst parameter as the single flow traffic.

These results are expected because according to Proposition 2, the traffic at the relay

node has the scaled version of the autocovariance of the single flow traffic. This fact

suggests that the PSD of the aggregated traffic is only a shift of the PSD of the single

flow traffic in the log-log scale, thus making the Hurst parameter unchanged.
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Figure 9: Aggregated traffic vs. single traffic.
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Figure 10: PSD of aggregated traffic vs. PSD of single traffic.
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CHAPTER IV

ASYMPTOTIC DELAY ANALYSIS UNDER

HEAVY-TAILED ENVIRONMENT

4.1 Introduction

Transmission delay, as one of the key QoS metrics, has been widely studied for classical

communication network paradigms the last several decades. Heavy-tailed delay, i.e.,

the delay following heavy tail distribution exhibits significantly different behavior

from that of the light-tailed (e.g., exponential) ones [41]. More specifically, heavy-

tailed delay can have infinite moments of lower orders, e.g., mean and variance. In

this case, the network can exhibit significant performance degradations including the

considerably reduced network throughput, queue stability, and system scalability.

Despite its importance, the tail behavior of transmission delay in wireless domain

is still an under-explored area, partially due to the dynamic and complex network

environment.

In this chapter, we provides an asymptotic analysis of the transmission delay

under dynamic spectrum access schemes. Dynamic spectrum access (DSA) is an

emerging communication technique that allows the secondary users (SUs) to share

the spectrum in an opportunistic manner [2]. Using such scheme, the SUs can access

the unoccupied spectrum during idle periods of the primary users (PUs), and stop

transmissions when the PU channels become busy. The opportunistic use of the

unoccupied spectrum will enable next-generation cellular networks that allow high

bandwidth multimedia applications, sensor networks that avoid interference from the

coexisting WiFi, military networks that can can be set up in foreign lands, and also

allow greater outreach to areas lacking wireless infrastructure
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So far, the majority of research in dynamic spectrum access networks focuses on

the development of the resource allocation and spectrum management schemes under

the assumption of the light tailed behavior of primary and secondary users. In [28] and

[61], the queuing delay of SUs in a multi-channel cognitive network was investigated

with different objectives. Specifically, using large deviation approximation, [28] aimed

to analyze the stationary queue distribution of SUs under the Markov chain based

PU traffic model. On the contrary, [61] studied the moments of the SUs’ queue

length under the PU traffic modeled as an alternating ON/OFF process, where the

ON periods follow a general distribution and the OFF periods are exponentially

distributed.

Contrary to this conventional light-tailed assumption, significant empirical evi-

dence establishes that both PU and SU traffic can actually exhibit the heavy tailed

nature. As for the primary users, it is shown that the call holding time of mobile users

in 3G cellular networks and the session duration of licensed users in WLANs show

heavy tailed statistics [63][32]. On the other hand, the emerging applications such as

mobile internet, multimedia surveillance, video conferencing, and on-line gaming re-

quire secondary users to support internet and multimedia traffic, which is inherently

bursty and exhibits heavy tailed nature. In spite of its importance, the performance

limits of DSA network in the presence of the heavy tailed traffic is still an under-

explored area, which, however, can fundamentally challenge the applicability and

effectiveness of DSA scheme. For example, recent research shows that such heavy

tailed behavior has a significant impact on the performance of spectrum sensing [63],

which is the building block for many wireless communication schemes.

We consider a dynamic spectrum access network in which an SU can exploit the

spectrum holes of multiple stochastically independent channels. A PU channel is

modeled by an alternating renewal process, which alternates between busy periods

{Bi}i≥1 and idle periods {Ii}i≥1. An SU is only allowed to transmit during the idle
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periods, and avoid transmissions when the PU channels become busy. Upon the ar-

rival of a message with size L > 0, the SU first splits it into multiple packets with

constant size Lp > 0, which are then sent consecutively over PU channels. Accord-

ingly, the total time an SU takes to complete the transmissions of a message is defined

as the transmission delay. Apparently, under such generic settings, the transmission

delay has a close relationship with the SU message size as well as the PU channel

availability. The distributions of the message size and PU busy time can be either

heavy tailed (HT) or light tailed (LT), depending on the underlying communication

systems and the applications the SUs and PUs demand for. For example, in the

earlier 2G voice-oriented cellular systems, empirical measurements show that the call

holding times are light tailed, or more specifically, exponentially distributed [46]. On

the contrary, heavy tailed distributions have been widely observed in current data-

oriented communication networks. For example, the file size on the Internet servers,

the web access pattern, and the scene length distribution of VBR (variable bit rate)

and MEPG video streams have shown HT statistical characteristics [41]. Moreover,

recent empirical evidence shows that the call holding time or channel occupancy time

in 3G cellular networks also exhibits the HT nature [62][63].

In this work, we first investigate the delay performance when only a single PU

channel is utilized [57] [54]. Specifically, it is shown that DSA induces only light-tailed

delay as long as both the busy time of PU channels and the message size of SUs are

light-tailed. On the contrary, if either the busy time or the message size is heavy

tailed, then the SUs’ transmission delay is heavy tailed. For this case, we prove that

if one of the busy time or the message size is light-tailed and the other is regularly

varying with index α, then the transmission delay is regularly varying with the same

index α. As a consequence, the delay has an infinite variance provided α < 2 and an

infinite mean provided α < 1. This implies that SUs can experience extremely high

delay variations and even stochastically zero throughout when transmitting messages
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with finite mean size. Furthermore, if both the busy time and the message size are

regularly varying with index α and β, respectively, then the tail distribution of the

delay is as heavy as the one with the smaller index.

Moreover, we investigate the benefits of exploiting the transmission opportunities

on multiple PU channels [57] [54]. More specifically, we consider two multiple channel

access schemes, namely, spectrum mobility and multi-radio diversity. Under spectrum

mobility, if a PU appears in a channel currently used by an SU, the SU vacates the

channel immediately and continues its transmission in another idle channel [2]. Under

multi-radio diversity, an SU is equipped with multiple radio interfaces so that it can

simultaneously access multiple channels. We show that compared with the case in

which only a single channel is used, both spectrum mobility and multi-radio diversity

can mitigate the degree of heavy tailed delay by increasing the orders of its finite

moments.

It is worth to notice that a different application that is related to our work is file

fragmentation [37]. In this problem, files are partioned into fragments and transferred

over wireless channels. The objective is to find the optimal fragmentation policies

that minimize the mean transmission time. Different from the file fragmentation

application, in which only one file fragment is sent each time the wireless channel is

available, SUs will keep sending packets back-to-back as long as the PU channel is

detected as idle. Moreover, in the file fragmentation problem, the channel busy time

is assumed to be zero [37]. This assumption is not valid in dynamic spectrum access

networks due to the existence of PU activities. In particular, recent work, which

is based on real-life measurement data, has identified the heavy tailed behavior in

the busy periods of PU channels [63]. This behavior was further shown to have a

significant impact on the sensing performance of SUs. However, [63] did not answer

how this heavy-tailed behavior of PU channels affects the delay performance of SUs,

which is one of the key research problems addressed in this chapter.
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The rest of this chapter is organized as follows. Section 4.2 introduces system

model. Section 4.3 presents the main results regarding the delay performance of SUs.

The impact of spectrum mobility and multi-radio diversity is studied in Section 4.4.

The simulation results are presented in Section 4.5.

4.2 System Model

Consider a PU channel and an SU which transmits when the PU channel is idle.

Without loss of generality, we assume that the PU channel is of unit capacity. This

channel is modeled by an alternating renewal process, which alternates between busy

periods {Bi}i≥1 and idle periods {Ii}i≥1. {Bi}i≥1 and {Ii}i≥1 are mutually inde-

pendent random sequences of i.i.d. random variables with distribution FB and FI ,

respectively. Let L > 0 denote the size of the messages generated by the SU, and L is

a random variable (r.v.) independent of {Bi}i≥1 and {Ii}i≥1. For each message, the

SU divides it into packets with constant size Lp > 0, which are then sent over the PU

channel. In each idle period Ii, the SU attempts to transmit, and if Ii > Lp, the SU

sends packets consecutively until the remaining time of the idle period Ii is less than

the packet size Lp. Otherwise, if Ii < Lp, the SU transmits unsuccessfully and waits

for the next idle period for retransmission. An illustration of this model is given in

Figure 11.
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Packet Lost
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Packet Transmitted

Figure 11: System model.

Definition 6. During an idle period Ii, the transmission time Xi of the SU is defined
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as

Xi := sup{nLp : nLp ≤ Ii}, (72)

the total number of idle periods the SU occupies for transmitting a message of size L

is defined as

M := inf

{
m :

m∑
i=1

Xi ≥ L

}
, (73)

and the total delay T of the SU transmitting a message of size L is defined as

T (L) :=
M∑
i=1

{Ii +Bi} . (74)

4.3 Asymptotic Analysis of the Transmission Delay

In this section, we study the tail asymptotics for the transmission delay experienced

by SUs with PU idle times {Ii}i≥1 following LT distribution.

Theorem 1. If the message size L is heavy tailed, then the number M of idle periods

for sending such file is heavy tailed.

Theorem 2. If either the busy period Bi or the message size L is heavy tailed, then

the transmission delay T (L) is heavy tailed.

Theorem 3. If both the busy period Bi and the message size L are light tailed, then

the transmission delay T (L) is light tailed.

Remark 9. From these results, we see that under the DSA paradigm, SUs can expe-

rience light tailed transmission delay if and only if both the message size of SUs and

the busy time of PUs are light tailed. In other words, the heavy tailed delay originates

not only from the heavy tailed file size but also from the heavy tailed busy time. In

this case, the SUs’ transmission delay probably has infinite moments of certain orders,

e.g., mean and variance, and definitely has an infinite moment generating function,

i.e., infinite exponential moments of all orders.
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Proof of Theorem 1. From (73), we have

P (M > t) = P

(
L >

t∑
i=1

Xi

)
. (75)

Let µ := E[X1]. For ε ∈ (0, µ), by the law of large numbers, we obtain

P (M > t) = P

(
L >

t∑
i=1

Xi

)

≥ P

(
L >

t∑
i=1

Xi ∧ t(µ− ε) <
t∑

i=1

Xi < t(µ+ ε)

)

≥ P (L > t(µ+ ε))P

(
t(µ− ε) <

t∑
i=1

Xi < t(µ+ ε)

)
∼ P (L > t(µ+ ε))

Letting ε ↓ 0 yields P (M > t) & P (L > µt). Let t′ = µt. For any θ > 0,

lim
t→∞

eθtP (M > t) ≥ lim
t→∞

eθtP (L > µt)

= lim
t′→∞

e
θ
µ
t′P (L > t′)

= ∞.

The last equation holds since L is HT. Thus, M is HT by the Definition 1.

Proof of Theorem 2. We first consider the case where L is HT. For any δ > 0, we

have

P (T (L) > t)=P

(
M∑
i=1

Ii +Bi > t

)

≥P

(
M ≥ t(1 + δ)

E[X1]

)
−P

(
M∑
i=1

Ii < t ∧M ≥ t(1 + δ)

E[X1]

)

≥P

(
M ≥ t(1 + δ)

E[X1]

)
− P

t(1+δ)/E[X1]∑
i=1

Ii < t
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Let Ĩi := E[I1]− Ii. Since Ii is LT, then Ĩi is LT. Thus, by applying Chernoff bound,

we can argue that there exists a positive constant λ such that for large enough t

P

t(1+δ)/E[X1]∑
i=1

Ii < t

 = P

t(1+δ)/E[X1]∑
i=1

Ĩi > δt

 < e−λt.

Since L is HT, then M is HT. Thus, for any 0 < θ < λ

lim
t→∞

eθtP (T (t) > t) = ∞. (76)

For any θ > λ, there always exists a constant 0 < θ̃ < λ such that

lim
t→∞

eθtP (T (t) > t) > lim
t→∞

eθ̃tP (T (t) > t) = ∞. (77)

Combining (76) and (77), we have for any θ > 0,

lim
t→∞

eθtP (T (t) > t) = ∞. (78)

This implies that T (L) is HT by Definition 2.

We will next consider the case where Bi is HT. Since we prove in the previous

case that if L is HT, then T (L) is HT, we assume that L is LT. It is easy to see

P (T (L) > t) = P

(
M∑
i=1

Ii +Bi > t

)
≥ P

(
M∑
i=1

Bi > t

)
. (79)

which implies T (L) is HT provided one can prove Z :=
∑M

i=1Bi is HT. Towards this,

by the independence between M and Bi, we obtain the moment generating function

MZ(x) of Z, i.e.,

MZ(x) = E
[
ex

∑M
i=1 Bi

]
= E

[
(E[eB1 ])xM

]
Since function f(y) = ay is convex and B1 is HT, by Jensen’s inequality [45], for all

x > 0

MZ(x) = E
[
(E[eB1 ])xM

]
≥
(
E[eB1 ]

)xE[M ]
= ∞

Thus, it follows that T (L) is HT by the Definition.
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Proof of Theorem 3. By Definition (72), we have Xi = NiLp with N as a positive

integer random variable, where

Ni = sup

{
n :

n∑
i=1

nLp ≤ Ii

}
. (80)

It is easy to see

P (Ni > n) = P (Ii ≥ (n+ 1)Lp) (81)

This implies that Ni is LT by Lemma 7. Accordingly, it follows easily from Definition

3 that Xi = NiLp is LT. Therefore, invoking Lemma 10(3), we obtain that M is LT.

Since Ii +Bi is LT by Lemma 10(1), we finally obtain that T (L) is LT using Lemma

10(2).

The above Theorems state the conditions under which the SUs’ transmission delay

exhibits heavy tailed behavior. The following Theorems present the exact asymptotic

results for this delay under the regularly varying busy time of PUs and message size

of SUs.

Theorem 4. If L ∈ RV(α), then M ∈ RV(α) and

P (M > t) ∼ P (L > E[X1]t). (82)

Remark 10. Comparing with Theorem 1, Theorem 4 provides more refined results

regarding the total number of idle periods an SU occupies to transmit a message.

Specifically, if the message size is regularly varying, then the number of idle periods

for transmitting such message is also regularly varying with the same index. This

implies that if the message size has infinite mean and variance, so does the number

of idle periods occupied by SUs.

Theorem 5. If L ∈ RV(αl) and Bi is LT, then T (L) ∈ RV(α) and

P (T (L) > t) ∼ P

(
L >

E[X1]

E[I1] + E[B1]
t

)
. (83)
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Theorem 6. If Bi ∈ RV(α) and L is LT, then T (L) ∈ RV(α) and

P (T (L) > t) ∼ E[M ]P (B1 > t). (84)

Remark 11. The preceding results establish the relationship between the tail asymp-

totics of L, Bi, and T (L). Specifically, if one of either the busy time or message

size is light tailed and the other is regularly varying, then the tail distribution of the

transmission delay is asymptotically proportional to the one with regularly varying

distribution. This result implies that SUs can experience extremely high delay vari-

ance and stochastically zero throughput even when the transmitting messages are of

finite mean size. For example, if the message size is LT, then its mean is finite.

In this case, by Theorem 6, when 2 > α > 1, the transmission delay does not have

finite variance, and when 1 > α > 0, it does not have finite mean, which implies

approximately zero throughput on the average.

Theorem 7. Assume that B ∈ RV(αb), L ∈ RV(αl), and E[L] < ∞. Then, we have

1. If αb < αl, then T (L) ∈ RV(αb) and

P (T (L) > t) ∼ E[M ]P (B1 > t) (85)

.

2. If αb ≥ αl,

lim
t→∞

log [P (T (L) > t)]

log t
= −αl. (86)

Corollary 1. If B ∈ RV(αb), L ∈ RV(αl), and E[L] < ∞, then

lim
t→∞

log [P (T (L) > t)]

log t
= −min(αb, αl),

and accordingly, the moments of orders m > min(αb, αl) is unbounded, i.e.,

E[T (L)m] = ∞
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Remark 12. Comparing the above Theorem and Theorem 4 - 6, we observe that

the exact asymptotic tail for the transmission delay is not available in the case of

αb ≥ αl. Instead, Corollary 1 states that if both busy time and message size are

regularly varying, then the tail heaviness of the transmission delay is asymptotically

equivalent to the one with smaller index. In this case, it follows directly from Theorem

2 in [11] that the transmission delay still has infinite moments of orders larger than

the index min(αb, αl), even through this delay does not strictly follow regular varying

distributions.

The proof of Theorem 4 relies on Lemma 11, which we state and prove first.

Lemma 11. Let T̃ (L) =
∑M

i=1 Ii. If L ∈ RV(α), then

P (T̃ (L) > t) ∼ P (L > δt), (87)

where δ = E[X1]/E[I1].

The proof of Lemma 11 relies on Theorem 8 [17]. This technique is similar to the

one used in the proof for optimal file fragmentation [37].

Theorem 8. [17] Let L ∈ RV(α). Let R(t) be a non-negative, almost surely non-

decreasing random process independent of L. If R(t) satisfies following conditions:

1. R(t)/t → γ almost surely as t goes to infinity, with 0 < γ < 1.

2. There exists a positive and finite constant K such that P (R(t)/t < K) =

o(P (L > t)).

Then P (L > R(t)) ∼ P (L > γt)

Proof of Lemma 11. We define Nt := sup {n :
∑n

i=1 Ii < t} and R(t) :=
∑Nt

i=1Xi. It

is easy to see that P (T̃ (L) > t) = P (L > R(t)). Thus, to prove Lemma 11, it is
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sufficient to prove condition 1 and 2 of Theorem 8 are satisfied. By renewal theory,

we have

lim
t→∞

R(t)

t
=

E[X1]

E[I1]
= γ (88)

almost surely. Since X1 ≤a.s. I1, we conclude E[X1] < E[I1] and 0 < γ < 1, implying

that condition 1 of Theorem 8 is satisfied. Next, we will prove that condition 2 of

Theorem 8 is also satisfied. Let K = (1− δ)E[X1]/((1 + δ)E[I1]). Then, for any

1 > δ > 0, we have

P (R(t) < Kt)≤P

(
Nt <

t(1− δ)

E[I1]

)
+P

(
Nt∑
i=1

Xi < Kt ∧Nt >
t(1− δ)

E[I1]

)
:=J1 + J2

For J1, since Ii is LT, by Chernoff bound, there exists λ1 > 0 such that

J1 ≤ P

t(1−δ)/E[I1]∑
i=1

Ii > t

 ≤ e−λ1t. (89)

For J2, let X̃i = E(Xi)−Xi, we obtain

J2 < P

t(1−δ)/E[I1]∑
i=1

Xi < Kt


= P

t(1−δ)/E[I1]∑
i=1

X̃i >
δ(1− δ)E[X1]

(1 + δ)E(I1)
t


Since Xi is LT, by Chernoff bound, we can always find λ2 > 0 such that

J2 ≤ e−λ2t. (90)

By (89) and (90), we conclude

P (R(t) < Kt) ≤ e−λ1t + e−λ2t (91)

Since L ∈ RV(α), we have

lim sup
t→∞

P (R(t) < Kt)

P (L > t)
≤ lim sup

t→∞

e−λ1t + e−λ2t

t−αL(t)
= 0 (92)
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The last equality holds since regularly varying distributions are a subclass of HT

distributions. Accordingly, for any λ > 0, limt→∞(eλtt−αL(t)) = ∞. By (92), we

conclude P (R(t) < Kt) = o(P (L > t)). Therefore, both condition 1 and 2 of Theorem

8 are satisfied. This completes tbe proof.

Proof of Theorem 4. Let T̃ (L) =
∑M

i=1 Ii. By Lemma 11, (82) follows provided one

can show that

P (T̃ (L) > t) ∼ P (M >
t

E[I1]
) (93)

For all 1 > δ > 0, we obtain

P (T̃ (L) > t)≤P

(
M ≥ t(1− δ)

E[X1]

)
+P

(
M∑
i=1

Ii > t ∧M ≤ t(1− δ)

E[I1]

)

≤P

(
M ≥ t(1− δ)

E[X1]

)
+ P

t(1−δ)/E[X1]∑
i=1

Ii > t


∼P

(
M ≥ t(1− δ)

E[X1]

)
(94)

The last step follows from Chernoff bounds. Letting δ ↓ 0, this proves the upper

bound in (93). As to the lower bound, for all δ > 0, letting Ĩi := E[I1]− Ii yeilds

P (T̃ (L) > t)≥P

(
M ≥ t(1 + δ)

E[X1]

)
−P

(
M∑
i=1

Ii < t ∧M ≥ t(1 + δ)

E[I1]

)

≥P

(
M ≥ t(1 + δ)

E[X1]

)
− P

t(1+δ)/E[X1]∑
i=1

Ĩi > δt


∼P

(
M ≥ t(1 + δ)

E[X1]

)
(95)

Letting δ ↓ 0, this proves the lower bound in (93). By (94) and (95), we obtain

P (M >
t

E[I1]
) ∼ P (T̃ (L) > t) ∼ P

(
L >

E[X1]

E[I1]
t

)
,
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which implies P (M > t) ∼ P (L > E[X1]t). This completes the proof of (82) and

implies M ∈ RV(α) by Lemma 5.

Proof of Theorem 5. The proof follows easily by the similar arguments used in prov-

ing Lemma 11.

To facilitate the proofs of Theorem 6 - 7, we define TI :=
∑M

i=1 Ii and TB :=∑M
i=1Bi. This implies T (L) = TI + TB.

Proof of Theorem 6. To prove Theorem 6, we first show that TI is LT and P (TB >

t) ∼ E[M ]P (L > t). First, we argue that TI is LT. Since L is LT, from Lemma 10(3),

we conclude that M is LT. This implies that TI :=
∑M

i=1 Ii is LT using Lemma 10(2).

We now show that P (TB > t) ∼ E[M ]P (L > t). Since M is independent of Bi

and Bi ∈ RV(α), it follows that P (M > t) = o(P (Bi > t)) invoking Lemma 6. From

Lemma 8(1), we see that

P (TB > t) ∼ E[M ]P (B1 > t) (96)

which, in turn, implies TB ∈ RV(αl) by invoking Lemma 2(3). We are now ready to

prove the upper bound in (84). For any 0 < δ < 1

P (T (L) > t) = P (TI + TB > t)

≤ P (TB > (1− δ)t) + P (TI > δt)

∼ P (TB > (1− δ)t)

The last step follows since P (TI > δt) = o(P (TB > (1−δ)t)) using Lemma 6. Letting

δ ↓ 0, this proves the upper bound in (84). As to the lower bound, it is easy to see

P (T (L) > t) = P (TI + TB > t) ≥ P (TB > t)

which, combining with the upper bound, completes the proof of (84). Moreover, (84)

implies T (L) ∈ RV(α) using Lemma 2(3). This completes the proof.
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Proof of Theorem 7. We first consider the case where αb < αl. Since L ∈ RV(αl)

and E[M ] < ∞, using Theorem 4, we obtain that M ∈ RV(αl) and E[M ] < ∞.

This, combining with αb < αl, implies that P (M > t) = o(P (B1 > t)) using Lemma

4. Invoking Lemma 8(1), we conclude that

TB =
M∑
i=1

Bi ∼ E[M ]P (B1 > t).

which in turn implies that TB ∈ RV(αb) by Lemma 5. By Lemma 11, we can see

that TI ∈ RV(αl) since L ∈ RV(αl).

We are now ready to prove the upper bound in (85). For any 1 > δ > 0, we obtain

that

P (T (L) > t) ≤ P (TB > (1− δ)t) + P (TI > δt) (97)

Since TI ∈ RV(αl), TB ∈ RV(αb), and αb < αl, using Lemma 4, we obtain that

P (TI > δt) = o(P (TB > (1−δ)t)). This implies that P (T (L) > t) . P (TB > (1−δ)t)

from (97). Letting δ ↓ 0, we verify the upper bound in (85). As to the lower bound,

it is easy to see that P (T (L) > t) ≥ P (TB > t). Since the lower and upper bounds

coincide, this completes the proof of (85).

We will next consider the case where αb ≥ αl. Since L ∈ RV(αl), from Lemma

11 and regular variations, we obtain that

P (TI > t) ∼
(

E[I1]

E[X1]

)αl

P (L > t). (98)

From Theorem 4, we conclude that M ∈ RV(αl) and

P (M > t) = P (L > E[X1]t) .

If αb > αl, it follows that P (M > t) = o(P (Bi > t)). This implies, using Lemma

8(2), that

P (TB > t) ∼
(
E[B1]

E[X1]

)αl

P (L > t). (99)

If αb = αl, using Lemma 9, we obtain that

P (TB > t) ∼ E[M ]P (B1 > t) + (E[B1])
αlP (L > t). (100)
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Combining (97), (98), (99) and (100), we obtain that

lim sup
t→∞

log[P (T (L) > t)]

log t
≤ −αl

which, in conjunction with

lim inf
t→∞

log[P (T (L) > t)]

log t
≥ lim inf

t→∞

log[P (TI > t)]

log t
≥ −αl

completes the proof.

All the above theorems consider the case where the idle periods {Ii}i≥1 are LT

r.v.s. The following Theorem computes the logarithmic asymptotics for the delay

under regularly varying idle periods, i.e., {Ii}i≥1 ∈ RV(αI).

Theorem 9. Assume that Bi ∈ RV(αb). If L ∈ LT or L ∈ RV(αl) with αb < αl, we

have

lim
t→∞

log [P (T (L) > t)]

log t
= −αb. (101)

Assume that L ∈ RV(αl) and E[L] < ∞. If Bi ∈ LT or Bi ∈ RV(αl) with αl ≤ αb,

we have

lim
t→∞

log [P (T (L) > t)]

log t
= −αl. (102)

Remark 13. From the above results, we can see that the tail heaviness (i.e., logarith-

mic decaying rate) of the delay distribution only depends on either the message size

or the busy period, whichever has the heavier tail distribution or the smaller decay-

ing rate, i.e., min(αl, αb). This is consistent with the conclusions made in the case

where idle periods are LT r,v.s. This implies that the tail behavior of the idle period

distribution has no impact on the tail heaviness of the delay distribution.

Proof of Theorem 9. The proof follows the similar arguments used in proving the

asymptotic results under the case where idle periods are LT r.v.s.
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4.4 Impact of Spectrum Mobility and Multi-radio Diversity

In this section, we study the impact of spectrum mobility and multi-radio diversity on

the delay performance of SUs. By spectrum mobility, we mean that if a PU appears in

a channel currently used by an SU, the SU should vacate the channel immediately and

continue its transmission in another idle channel. By multi-radio diversity, we mean

that an SU is equipped with multiple radio interfaces so that it can simultaneously

access multiple channels.

Assume that there existK ≥ 1 PU channels, which are modeled byK independent

alternating renewal processes as defined in section II. Each channel K ≥ j ≥ 1 is

denoted by CHj = {(B(j)
i , I

(j)
i )})i≥1 and channels {CHj}K≥j≥1 are heterogenous,

i.e., {B(j)
1 }K≥j≥1 (or/and {I(j)1 }K≥j≥1) are not identically distributed. To simplify the

analysis, we assume that the idle periods are light tailed.

4.4.1 Spectrum Mobility

By spectrum mobility, an SU can switch to the idle channels when its current oper-

ating channel is occupied by a PU. As a consequence, the SU sees K channels as a

single virtual channel, which stays idle if one of K channels is idle and stays busy if all

K channels are busy. This virtual channel can be modeled by a random process that

alternates between busy {Bs
i }i≥1 and idle {Isi }i≥1 periods. (Note that neither {Bs

i }i≥1

nor idle {Isi }i≥1 are necessarily i.i.d. random sequences.). The idle period Isi of the

virtual channel is formed through a sequence of idle periods {I(c1)n1 , I
(c2)
n2 , ..., I

(ck)
nl } from

multiple channels {c1, c2, ..., ck}. The actual idle time A
(j)
i an SU can utilize from a

particular idle period I
(j)
i of channel j depends on channel switching policies, which

specify whether and when the SU should switch to channel j if the current channel

becomes busy. Obviously, we have 0 ≤ A
(j)
i ≤ I

(j)
i and {A(j)

i }i≥1 are independent but

not necessarily equally distributed. The delay under spectrum mobility is defined as

follows.
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Definition 7. (Spectrum mobility) Consider a channel 1 ≤ j ≤ K with busy periods

{B(j)
i }i≥1, idle periods {I(j)i }i≥1, and the corresponding actual idle times {A(j)

i }i≥1.

During each A
(j)
i , we define the transmission time Y

(j)
i as

Y
(j)
i := sup{nLp : nLp ≤ A

(j)
i }. (103)

Furthermore, we define

N (j)
s (t) := sup

{
nj :

nj∑
i=1

(I
(j)
i +B

(j)
i ) < t

}
, (104)

and the total delay Ts(L) under spectrum mobility is defined as

Ts(L) := inf

t :
K∑
j=1

N
(j)
s (t)∑
i=1

Y
(j)
i > L

 . (105)

4.4.2 Multi-radio Diversity

By multi-radio diversity, an SU is equipped with K radio interfaces with each one

operating on a different channel. With this feature, there exist two transmission poli-

cies: static multi-radio diversity and dynamic multi-radio diversity. Under the static

policy, before transmitting a message, the SU divides it into K fragments with each

fragment segmented into packets and sent over a preassigned interface. The total

transmission delay is the time for the SU to finish sending all fragments. On the

contrary, under the dynamic policy, without fragmenting the message before trans-

mission, the SU directly divides the message into packets and dynamically assigns

each packet to an interface whenever the channel associated with this interface is

idle. The total transmission delay is the time for the SU to finish sending all the

packets over multiple interfaces. The transmission delay under the two policies is

defined respectively as follows.

Definition 8. (Static multi-radio diversity) Consider a message of size L, which is

divided into fragments of sizes {riL}K≥i≥1 such that 0 ≤ ri ≤ 1 and
∑K

i=1 ri = 1. Let
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Ti(riL) be the delay of sending a fragment of size riL over interface i. Then, the total

delay T s
m(L) under static multi-radio diversity is defined as

T s
m(L) := max

K≥i≥1
Ti(riL) (106)

Definition 9. (Dynamic multi-radio diversity) Given a channel 1 ≤ j ≤ N with busy

periods {B(j)
i }i≥1 and idle periods {I(j)i }i≥1. During an idle period I

(j)
i of the channel

j, we define the transmission time X
(j)
i as

X
(j)
i := sup{nLp : nLp ≤ I

(j)
i }. (107)

Furthermore, we define

N (j)
m (t) := sup

{
nj :

nj∑
i=1

(I
(j)
i +B

(j)
i ) < t

}
, (108)

and the total delay T d
m(L) under dynamic multi-radio diversity is defined as

T d
m(L) := inf

t :
K∑
j=1

N
(j)
m (t)∑
i=1

X
(j)
i > L

 . (109)

4.4.3 Asymptotic Delay Analysis

Theorem 10. Given K channels, where {B(j)
1 }K≥j≥1 are regularly varying random

variables with indices α1, α2, ..., αK, respectively. Define αΣ :=
∑

j≤K αj, α− :=

minK≥j≥1 αj, and α+ := maxK≥j≥1 αj.

1. Under spectrum mobility, there exists a channel switching policy such that if L

∈ LT, then

lim
t→∞

log[P (Ts(L) > t)]

log t
≤ −α+. (110)

If L ∈ RV(αl) and E[L] < ∞, then

lim
t→∞

log[P (Ts(L) > t)]

log t
≤ −min(α+, αl) (111)
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2. Under static multi-radio diversity, if L ∈ LT, then

lim
t→∞

log[P (T s
m(L) > t)]

log t
= −α− (112)

If L ∈ RV(αl) and E[L] < ∞, then

lim
t→∞

log[P (T s
m(L) > t)]

log t
= −min(α−, αl) (113)

3. Under dynamic multi-radio diversity, if L ∈ LT,

lim
t→∞

log[P (T d
m(L) > t)]

log t
= −αΣ (114)

If L ∈ RV(αl) and E[L] < ∞, then

lim
t→∞

log[P (T d
m(L) > t)]

log t
= −min(αΣ, αl) (115)

Remark 14. From the above results, we see that both spectrum mobility and dy-

namic multi-radio diversity can greatly improve the delay performance of SUs, while

static multi-radio diversity can deteriorate it. Particularly, Theorem 10(3) implies

that under dynamic multi-radio diversity, the delay distribution decays at a rate equal

to the sum of the indices of all channels, i.e., αΣ :=
∑

i≤K αi. This rate is much

higher than the one under the single channel case, which, as implied by Theorem 6

and Corollary 1, is equal to the index αi of a particular channel i. On the other

hand, Theorem 10(1) implies that the decaying rate of the delay distribution under

spectrum mobility is lower bounded by that of the best channels, which have the largest

index αj among all channels. On the contrary, Theorem 10(2) indicates that the de-

lay distribution under static multi-radio diversity decays as faster as that of the worst

channels, which have the smallest index αj among all channels. As a consequence,

compared with the single channel case, spectrum mobility and dynamic multi-radio

diversity can mitigate the heavy tailed delay by increasing the orders of its finite mo-

ments at least to maxK≥j≥1 αj and exactly to αΣ :=
∑

i≤K αi, respectively, while static

multi-radio diversity can aggravate it by decreasing the orders of its finite moments

to minK≥j≥1 αj.
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Corollary 2. If L ∈ RV(αl) and αΣ ≥ αl, then we have

lim
t→∞

log[P (T d
m(L) > t)]

log t
= −αl

Remark 15. This corollary directly follows from Theorem 10(3) and implies that

as the number of channels increases, dynamic multi-radio diversity can achieve the

optimum delay performance by maximizing the orders of finite moments. In other

words, dynamic multi-radio diversity can guarantee the delay with finite moments up

to order αl, which is the highest order we can expect when transmitting heavy tailed

messages of index αl by using any multiple channel schemes .

Corollary 2 characterizes the logarithmic asymptotics of the delay distribution

for dynamic multi-radio diversity. The following Theorem 11 computes the exact

asymptotic results under some confined conditions.

Theorem 11. Given K channels, where {B(j)
1 }K≥j≥1 are regularly varying r.v.s with

indices α1, α2, ..., αK, respectively. Define ρ =
∑K

j=1 E[I
(j)
1 ]/(E[I

(j)
1 +B

(j)
1 ]) and α∗ :=∑

j≤K:αj>1(αj − 1). Assume that L ∈ RV(αl). If ρ < 1 and α∗ > αl, then

P (T d
m(L) > t) ∼ P

(
L >

K∑
j=1

E[X
(j)
1 ]

E[I
(j)
1 +B

(j)
1 ]

t

)
.

Remark 16. The preceding result indicates that as more channels are employed, the

tail distribution of the delay under dynamic multi-radio diversity is asymptotically

equivalent to that of the message size L scaled by a constant.

Proof of Theorem 10. Define Tj(L) as the total delay of sending a message of size L

over a particular channel K ≥ j ≥ 1. By Definition 1, we have Tj(L) :=
∑Mj

i=1{I
(j)
i +

B
(j)
i }, where Mj := inf{m :

∑m
i=1X

(j)
i ≥ L} and X

(j)
i := sup{nLp : nLp ≤ I

(j)
i }. To

prove (110) and (111), we consider a priority based channel switching policy, where

if the currently used channel becomes busy, an SU always switches to the channel j+

with the maximum index α+ = maxK≥j≥1 αj provided that this channel is idle. This
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implies from (103) that A
(j)
i = I

(j)
i . Since the SU cannot perform channel switching

in the middle of a packet being transmitted, it follows from (103) that Z
(j)
i ≤ Y

(j)
i ≤

X
(j)
i , where Z

(j)
i := (X

(j)
i − Lp)1(I

(j)
i > Lp), from which it follows that Ts(L) ≤a.s.

Tj+(L), where Tj+(L) :=
∑M ′

j

i=1{I
(j)
i + B

(j)
i } and M ′

j := inf{m :
∑m

i=1 Z
(j)
i ≥ L}. This

implies that

P (Ts(L) > t) ≤ P (Tj+(L) > t) (116)

If L ∈ LT, using Theorem 6, we obtain Tj+(L) ∈ RV(α+). This implies from (116)

lim
t→∞

log[P (Ts(L) > t)]

log t
≤ −α+.

which completes the proof of (110).

If L ∈ RV(αl), from Corollary 1, we conclude

lim
t→∞

log[P (Tj+(L) > t)]

log t
= −min(αl, α

+),

which implies from (116) that

lim
t→∞

log[P (Ts(L) > t)]

log t
≤ −min(αl, α

+).

This completes the proof of (111).

We will next prove Theorem 10(2). By the Definition of T s
m(L), we obtain

P (T s
m(L) > t) = P

(
K∪
i=1

Ti(riL) > t

)

This, using the union bound, implies

P (Tj(rjL) > t) ≤ P (T s
m(L) > t) ≤

K∑
j=1

P (Tj(rjL) > t). (117)

If L is LT, by Theorem 6, we have Tj(rjL) ∈ RV(αj). If αj > αi, using Lemma 4, we

obtain P (Tj(rjL) > t) = o(P (Ti(riL) > t). This implies from (117) that

− min
K≥j≥1

αj ≤ lim
t→∞

log[P (T s
m(L) > t)]

log t
≤ − min

K≥j≥1
αj,
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which completes the proof of (112).

If L ∈ RV(αl), from Corollary 1, we have

lim
t→∞

log[P (Tj(rjL) > t)]

log t
= −min(αl, αi),

which implies from (117) that

lim
t→∞

log[P (T s
m(L) > t)]

log t
= − min

K≥i≥1
min(αl, αi).

This completes the proof of (113).

We will now prove Theorem 10(3). Let

T (j)
m (L) := inf

t :

N
(j)
m (t)∑
i=1

X
(j)
i > L

 , (118)

which, combining (107) and (108), defines the total delay of sending a message of

size L over a single channel K ≥ j ≥ 1. This implies that T
(j)
m (L)

d
=Tj(L). Since

T d
m(L) ≤a.s. T

(j)
m (L) ∀1 ≤ j ≤ K, letting S

(j)
n :=

∑n
i=1 I

(j)
i + B

(j)
i and M+ :=

max1≤j≤K Mj, we have

P (T d
m(L) > t) ≤ P

(
min

1≤j≤K
T (j)
m (L) > t

)

= P

 K∩
j=1


Mj∑
i=1

(I
(j)
i +B

(j)
i ) > t




≤
n0∑
n=1

P (M+ = n)P

(
K∩
j=1

S(j)
n > t

)

+
∞∑

n=n0+1

P (M+ = n)P

(
K∩
j=1

S(j)
n > t

)
:= I + II

For term I, by Lemma 8(1), we have

I =

n0∑
n=1

P (M+ = n)
K∏
j=1

P
(
S(j)
n > t

)
∼E[(M+)K ]

K∏
j=1

P
(
B

(j)
1 > t

)
, n0 → ∞ (119)

71



For term II, for any 0 < δ < 1, we obtain

II ≤
∞∑

n=n0+1

P (M+ = n)P
(
S(j)
n > t

)
=

(
δt∑

n=n0+1

+
∞∑

n=δt

)
P (M+ = n)P

(
S(j)
n > t

)
:= J1 + J2 (120)

If αj ≤ 1, let µ := 0. Otherwise, let µ := E[I
(j)
1 ] + E[B

(j)
1 ]. For n < δt, we have

y := t− nµ > n(δ−1 − µ). Letting Y
(j)
1 := I

(j)
1 +B

(j)
1 , it follows from large deviations

[6] [36] theory that for any ε > 0

lim
n→∞

sup
y>εn

∣∣∣∣∣P (S
(j)
n − nµ > y)

nP (Y
(j)
1 > y)

− 1

∣∣∣∣∣ = 0

This implies that there exists C > 0 such that as n0 → ∞

lim sup
t→∞

J1 ≤ lim
n0→∞

C
∞∑

n=n0+1

P (M+ = n)nP (Y
(j)
1 > y) = 0 (121)

For term J2, by the union bound, we have

J2 ≤ P (M+ > δt) ≤
K∑
i=1

P (Mj > δt)

This, combining with (119), (120), and (121), proves the upper bound of T d
m(L), i.e.,

P (T d
m(L) > t) . c1

K∏
j=1

P
(
B

(j)
1 > t

)
+

K∑
i=1

P (Mj > δt)

where c1 := E[(M+)K ]. If L ∈ LT , by Lemma 10(3), it follows that Mj ∈ LT , which

implies

lim
t→∞

log[P (T d
m(L) > t)]

log t
≤ −

K∑
j=1

αj. (122)

If L ∈ RV(αl), it follows from Theorem 4 that Mj ∈ RV(αl), which implies that

lim
t→∞

log[P (T d
m(L) > t)]

log t
≤ −min(αl,

K∑
j=1

αj). (123)
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As to the lower bound, by the similar arguments as the proof of upper bound, we

have

P (T d
m(L) > t) ≥ P

(
K∩
j=1

{
Tj(

L

K
) > t

})

& c2

K∏
j=1

P
(
B

(j)
1 > t

)
(124)

where c2 is a constant. Given K channels, we have T d
m(L) > L/K surely, which

implies that P (T d
m(L) > t) > P (L/K > t). This, combining with (124), proves the

lower bound of (114) and (115). This, in conjunction with the upper bound (122)

and (123), completes the proof.

The proof of Theorem 11 relies on Lemma 12, which corresponds to the Corollary

1.6 and Corollary 1.8 of [36].

Lemma 12. Let X1, X2, ..., Xn be independent random variables with E[Xi] = 0, for

i = 1, 2, ..., n and define A+
t :=

∑n
i=1

∫
u≥0

utdP (Xi < u).

1. If 1 ≥ t ≥ 2 and A+
t < ∞, then for yt ≥ 4A+

t and x > y

P (
n∑

i=1

Xi ≥ x) ≤
n∑

i=1

P (Xi > y) +

(
e2A+

t

xyt−1

)x/2y

2. If t ≥ 2 and A+
t < ∞, then

P (
n∑

i=1

Xi ≥ x) ≤ c
(1)
t A+

t x
−t + exp

{
−c

(2)
t x2

B2
n

}

where c
(1)
t = (1 + 2/t)t, c

(2)
t = 2(t+ 2)−2e−t, and B2

n =
∑n

i=1E[(Xi)
2]

Proof of Theorem 11. By the definition of T d
m(L) in (109), we have

P (T d
m(L) > t) = P

 K∑
j=1

Mj(t)∑
i=1

X
(j)
i ≤ L


Define R(t) :=

∑K
j=1

∑Mj(t)
i=1 X

(j)
i . Using renewal theory, we obtain limt→∞ R(t)/t = γ,

where γ =
∑K

j=1 E[X
(j)
1 ]/(E[Ij1 +B

(j)
1 ]). To prove Theorem 11, it is sufficient to show
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that the conditions of Theorem 8 are satisfied. Since X
(j)
1 <a.s., I

(j)
1 , this implies that

E[Xj
1 ] < E[Ij1 ]. It follows from the assumption

∑K
j=1 E[I

(j)
1 /(E[Ij1 + B

(j)
1 ])] < 1 that

γ < 1, which verifies the first condition of Theorem 8. To verify the second condition,

we define  j+ = argmax1≤j≤K

(
E[I

(j)
1 +B

(j)
1 ]
)

j− = argmax1≤j≤K E[X
(j)
1 ]

(125)

Let ε := (1− δ)E[X
(j−)
1 ]/

(
(1 + δ)(E[I

(j+)
1 +B

(j+)
1 ])

)
and σ := (1− δ)/E[I

(j+)
1 +B

(j+)
1 ].

Then, for any 0 < δ < 1, we obtain

P (R(t) < εt)≤P

(
max
1≤j≤K

{N (j)
m (t)} ≤ σt

)

+P

 K∑
j=1

N
(j)
m (t)∑
i=1

X
(j)
i ≤ εt ∧ max

1≤j≤N
{N (j)

m (t)} > σt


:=J1 + J2 (126)

For term J1, it follows from the independence of {N (j)
m (t)}Nj=1 that

J1 = P (
K∩
j=1

N (j)
m (t) ≤ σt) =

K∏
j=1

P (N (j)
m (t) ≤ σt). (127)

For any B
(j)
i with αj > 1, let Z

(j)
i := I

(j)
i + B

(j)
i − E[I

(j)
i + B

(j)
i ]. By (108), we

obtain the following upper bound under the condition αj > 1 , i.e.,

P (N (j)
m (t) ≤ σt) =P

(
σt∑
i=1

(I
(j)
i +B

(j)
i ) > t

)

=P

(
σt∑
i=1

Z
(j)
i > t− (1− δ)(E[I

(j)
i +B

(j)
i ])

E[I
(j+)
1 +B

(j+)
1 ]

t

)

≤P

(
σt∑
i=1

Z
(j)
i > δt

)

Since I
(j)
1 ∈ LT and B

(j)
1 ∈ RV(αj), an argument similar to the proof of Theorem 6

yields P (Z
(j)
i > t) ∼ P (B

(j)
i > t). This implies Z

(j)
i ∈ RV(α|). Let α

∆
j := αj−∆. For

an arbitrary small ∆ > 0, we have E[(Z
(j)
i )α

∆
j ] < ∞. If 1 ≤ αj ≤ 2, letting y = δt/2,

74



an application of Lemma 12(1) and Markov inequality yields

P

(
σt∑
i=1

Z
(j)
i ≥ δt

)
≤ 2α

∆
j σE[(Z

(j)
i )α

∆
j ]

δα
∆
j tα

∆
j −1

+
σe2E[(Z

(j)
i )α

∆
j ]

δα
∆
j 21−α∆

j tα
∆
j −1

≤C
(1)
j t−(α∆

j −1) (128)

where C
(1)
j is a constant. If αj > 2, by Lemma 12(2), we obtain

P

(
σt∑
i=1

Z
(j)
i > δt

)
≤ σc

(1)
t E[(Z

(j)
i )α

∆
j ]

δα
∆
j tα

∆
j −1

+ exp

{
−c

(2)
t (δt)2

σtE[(Z
(j)
i )2]

}
≤C

(2)
j t−(α∆

j −1) (129)

where C
(2)
j is a constant, c

(1)
t = (1+2/α∆

j )
α∆
j , and c

(2)
t = 2(α∆

j +2)−2e−α∆
j . Combining

(127), (128), and (129) yields

J1 = o(t−
∑

i≤K:αi>1(αi−1)) = o(t−α∗
) (130)

For J2, using the union bound, we obtain

J2 ≤ P

 K∑
j=1

N
(j)
m (t)∑
i=1

X
(j)
i ≤ εt ∧

{
K∪
l=1

N (l)
m (t) > σt

}
≤ P

 K∪
l=1


K∑
j=1

N
(j)
m (t)∑
i=1

X
(j)
i ≤ εt ∧N (l)

m (t) > σt




≤
K∑
l=1

P

(
σt∑
i=1

X
(l)
i ≤ εt

)

Let X̃
(l)
i = E[X

(l)
i ]−X

(l)
i . By Chernoff bound, we can always find λ > 0 such that

P

(
σt∑
i=1

X
(l)
i ≤ εt

)
≤ P

(
σt∑
i=1

X̃
(l)
i >

δσE[X
(l)
i ]

(1 + δ)
t

)
≤ e−λt (131)

which, combining with (130), implies from (126) that P (R(t) < εt) = o(t−α∗
) As a

consequence, if α+ > αl, we obtain P (R(t) < εt) = o(P (L > t)) which verities the

second condition of Theorem 8 and completes the proof.
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4.5 Simulation Results

In this section, we use simulations to illustrate our theoretical results. As presented

in the preceding Theorems, the SUs’ HT delay is attributed to the HT message size as

well as the HT PU busy time. To verify this result, we choose Pareto and exponential

distributions to represent HT and LT distributions, respectively. We say that a

random variable X ∈ PAR(α, xm) if X follows a Pareto distribution with parameter

α and xm, i.e., P (X > t) = (xm/x)
α. We say that a random variable X ∈ EXP(λ)

if X follows an exponential distribution with parameter λ, i.e., P (X > t) = e−λt.

Without loss of generality, we let packet size Lp = 10.

We first study the delay with both the busy time and the message size being

LT. Specifically, we let {L, Ii} ∈ EXP(0.02) and Bi ∈ EXP(0.01). It is shown in

Figure 12 that the delay tail distribution is a straight line on a y-log scale, implying

that the delay is LT, specifically, exponentially distributed. Next, we investigate the

cases with the HT SU message size and/or the HT PU busy periods. All the following

simulation results are plotted on log-log coordinates, by which regularly varying (HT)

distribution can manifest itself as a straight line.
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Figure 12: Delay under LT message size and LT busy time.

We next investigate the cases where either the message size or the PU busy time

is HT. We first let {Bi, Ii} ∈ EXP(0.02) and L ∈ PAR(1.5, 20). It is seen in Figure

13 that the tail distribution of the transmission delay exhibits itself as a straight

line, which is parallel to that of the message size and overlapped with the theoretical

76



delay tail distribution indicated by Theorem 5. This means that the transmission

delay is HT and its tail distribution is as heavy as that of the message size. On the

contrary, if busy time is HT while message size is LT, as indicated by Theorem 6,

SUs can experience the transmission delay which has a tail distribution as heavy as

that of the PU channel busy time. To verify this, we let {L, Ii} ∈ EXP(0.02) and

Bi ∈ PAR(1.2, 10). It is seen in Figure 14 that the straight line that represents the

tail distribution of the transmission delay is parallel to that of the PU busy time and

coincident with the theoretical one stated by Theorem 6. This indicates that the

delay tail distribution is as heavy as that of the PU busy time. In sum, Figure 13

and 14 verify Theorem 5 and 6 by showing that if one of the busy time or message

size is light tailed and the other is regularly varying, then the tail of the transmission

delay is asymptotically proportional to the one with regularly varying distribution.
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Figure 13: Delay under HT message size and LT PU busy time.
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Figure 14: Delay under LT message size and HT PU busy time.
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We now study the case where both message size and PU busy time are HT. In this

case, Theorem 7 states that the delay performance is determined by either the busy

time or the message size whichever has the heavier tail. Figure 15 shows the case

where αl > αb by letting L ∈ PAR(2, 20), Bi ∈ PAR(1.2, 10), and Ii ∈ EXP(0.02),

while Figure 16 illustrates the case where αl ≤ αb by letting L ∈ PAR(1.2, 20),

Bi ∈ PAR(2, 10), and Ii ∈ EXP(0.02). It is shown in Figure 15 and 16 that the tail

distribution of the delay is parallel to that of either the message size or the busy time

whichever has the heavier tail or smaller index, which is consistent with Theorem 7.

Moreover, Figure 15 also verifies the exact asymptotic result stated in Theorem 7(1)

by showing its consistence with the empirical one.

To show the impact of the HT idle time on the delay performance, we also plot

the delay tail distribution with Ii ∈ PAR(1.2, 10) in Figure 13, 14, 15 and Figure

16, respectively. It can be seen that the delay tail distribution with HT idle time

is parallel to the one with LT idle time in each figure. This is as expected since as

indicated by Theorem 9, HT idle time has no impact on the tail heaviness of the

delay.
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Figure 15: Delay under HT message size and HT PU busy time with αb < αl

We now evaluate the impact of spectrum mobility and static multi-radio diversity

on the delay performance of secondary users. As indicated by Theorem 10(1) and

(2), the delay under spectrum mobility is determined by the best channel which has
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Figure 16: Delay under HT message size and HT PU busy time with αb ≥ αl

the busy time with the lightest tail, while the delay under static multi-radio diversity

is determined by the worst channel with the busy time having the heaviest tail. To

verify this, we consider the scenario where there exists three PU channels with LT idle

times, i.e., {I(1)i , I
(2)
i , I

(3)
i } ∈ EXP(0.01), and HT busy times, i.e., B

(1)
i ∈ PAR(1, 10),

B
(2)
i ∈ PAR(0.6, 10), and B

(3)
i ∈ PAR(0.4, 10). We evaluate the delay under the case

with HT message size as well as with LT message size by letting L ∈ PAR(2, 10) and

L ∈ EXP(0.01), respectively. As shown in Figure 17, by taking advantage of spectrum

mobility, the delay tail distribution decays faster than that of the best channel, which

has the lightest tail or largest index α1 = 1. This implies the existence of bounded

average delay. This is in sharp contrast to the delay performance of static multi-radio

diversity illustrated in Figure 18, where the delay tail distribution decays as fast as

the worst channel with the heaviest tail or smallest index α3 = 0.4. This implies that

the SU will experience unbounded delay even when transmitting messages with finite

mean.

We finally investigate the delay performance under dynamic multi-radio diversity.

We first consider the case where there exists three PU channels with LT idle times,

i.e., {I(1)i , I
(2)
i , I

(3)
i } ∈ EXP(0.01), and HT busy times, i.e., B

(1)
i ∈ PAR(0.4, 10),

B
(2)
i ∈ PAR(0.5, 10), and B

(3)
i ∈ PAR(0.6, 10). Figure 19 shows the delay of sending

messages with LT size, i.e., L ∈ EXP(0.05), and messages with HT size, i.e., L ∈
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PAR(2, 30), respectively. It can be seen that the delay tail distribution, as expected

from Theorem 10(3), matches the baseline one which has the index of 1.5, i.e., the sum

of the indices (α1 = 0.4, α2 = 0.5, α3 = 0.6) of the three channels. This implies that

the SU will have finite average delay, even through the average delay is unbounded

if the message is transmitted on each individual channel alone. Moreover, Figure

20 shows that as the sum of indices increases and becomes larger than 2, which is

the index of message size, the tail heaviness of the delay is asymptotically equivalent

to that of the message size. In addition, when the sum of the indices satisfies the

condition
∑3

i=1(αi − 1) > αl, e.g.,
∑3

i=1 αi = 5.1 , by Theorem 11. we can obtain the

exact asymptotic result of the delay tail distribution, which, as shown in Figure 20,

is consistent with the empirical one.
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CHAPTER V

THROUGHOUT-OPTIMAL SCHEDULING

ALGORITHMS UNDER HEAVY-TAILED TRAFFIC

5.1 Introduction

In the previous section, we show that wireless users can experience significantly de-

graded delay performance under heavy-tailed environment. Based on our derived

delay performance, the objective of this research is to study network stability in the

presence of heavy tails and provide valuable insights for designing effective network

optimization schemes. The three most common types of stability in the literature

include rate stability, steady-state stability, and strong stability. [38][48]. Particu-

larly, rate stability regulates the relationship between the time-average arrival rates

and service rates, while steady-state stability demands the existence of steady-state

distributions. Different from the first two definitions, strong stability has more strict

criterion by requiring each queue to have finite time-average expected queue length,

which is a desirable property for the applications with explicit QoS requirements.

However, under heavy-tailed environment, the conventional stability criterion may

need to be revisited for facilitating the design of QoS-oriented resource allocation

schemes in highly dynamic environment. Although the strong stability has been

proven to be achievable in many complex systems, such stability performance is diffi-

cult to obtain in a heavy-tailed environment. Specifically, it is known that the queuing

systems with heavy-tail arrival traffic or heavy-tailed service time inherently lead to

heavy-tailed queueing delay, which may have unbounded expectation and variance.

What is more important, recent research found that when two queues share the same

server under maximum weight scheduling policy, the queue with light-tailed traffic
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can experience infinite mean delay if the other queue has heavy-tailed traffic with infi-

nite variance. Moreover, even if strong stability exists in the presence of heavy-tailed

traffic, it does not necessarily imply the boundedness of the higher order moments,

such as delay variance (jitter), which is one of the key metrics for the QoS-sensitive

applications such as VoIP, on-line gaming and video conferencing.

The above observations motivate us to investigate network stability from a new

perspective. Specifically, we introduce a new stability criterion, namely moment sta-

bility, which requires that all the network users with light-tailed traffic arrivals always

have bounded queueing delay with finite mean and variance. Compared with strong

stability, moment stability not only requires the finiteness of lower order moments,

such as mean, but also demands the boundedness of higher order moments, such as

variance, provided that such moments exist. What is more important, moment stabil-

ity prevents heavy-tailed traffic, e.g., video conferencing and on-line gaming traffic,

significantly degrading the queueing performance of light-tailed traffic, e.g., email

deliveries, audio/voice traffic, and and scalar data (e.g., temperature and humidity)

gathering.

Based on the definition of moment stability, the network stability region is defined

as the closure of the set of all arrival rate vectors for which the queues of all network

users can be stabilized by a feasible scheduling policy. Moreover, a scheduling policy

is throughput optimal if it stabilizes the system for any arrival rates in the stability

region. Although moment stability is a desirable property to promise QoS guaranteed

applications, the conventional scheduling policies, which are effective under the light-

tailed traffic, may have difficulty in achieving moment stability in the presence of

heavy tails.

In this Chapter, we study the fundamental impact of heavy-tailed environment

on network stability [58][56]. Towards this, we consider a dynamic spectrum access

network in which multiple SUs opportunistically exploit the spectrum holes of a PU
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channel. The PU channel is modeled by an alternating renewal process, which alter-

nates between busy periods {Bi}i≥1 and idle periods {Ii}i≥1. Each SU is associated

with an input queue and a message arrives to the queue at each time slot with a cer-

tain probability. Upon the arrival of a message with random size L > 0, the SU first

splits it into multiple packets with constant size. At each time slot, one of the SUs

can be scheduled to transmit one packet provided that the PU channel is currently

detected idle. Apparently, under such generic settings, the queuing performance for

the SUs has a close relationship with the message size, the PU channel availability,

and the scheduling policies. For the detailed description of this model, see Section

5.2.

We first establish the critical conditions on the existence of moment stability under

the exclusive access policy and the shared access policy, respectively. The former

policy allows a SU has exclusive access to the PU channel without competing with

other SUs, while the latter policy requires all SUs to share the PU channel. Under

each policy, we study the necessary conditions for the existence of moment stability by

deriving the queue length asymptotics of the SUs to determine the moment finiteness

of the steady-state queue length. More specifically, it is shown that moment stability

is only achievable if the heavy-tailed channel busy time has a tail index larger than

three.

Utilizing this analysis, a maximum-weight-β scheduling algorithm is proposed,

which associates each queue with a different parameter β and makes the scheduling

decision based on the queue lengths raised to the β-th power. The maximum-weight-

β scheduling can be seen as a generalized version of the celebrated maximum-weight

scheduling, which makes scheduling decision based on queue lengths and is known to

be throughput optimal by stabilizing the queuing system for every supportable set of

traffic arrival rates [49]. However, Our asymptotic queuing analysis shows that the

maximum-weight scheduling leads to the worst possible asymptotic performance for
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the SU queues by letting each queue have the heaviest possible tail. In contrary, it is

shown that there always exists a feasible set of β parameters such that the maximum

weight-β scheduling yields the best asymptotic performance for the SU queues by

letting each queue have the lightest possible tail. In this case, the maximum-weight-

β schedule promises the throughput optimality by achieving moment stability for any

arrival rates in the stability region.

It is worth to note that [24] and [33] are among the first research efforts to study

the performance of the maximum weight-β in the queuing network and show that the

maximum weight-β is effective to mitigate the impact of the queue with heavy-tailed

traffic on the other queue with light-tailed traffic. Different from [24] which consider

a queuing system of two users competing a single channel, we study the maximum

weight-β scheduling for an arbitrary number of SUs which dynamically access a PU

channel with heavy tailed behavior. In this case, SU can only access PU channel

when it is detected idle and if a miss detection happens, SU needs to retransmit the

collided/loss packet. Apparently, the existing literature on heavy tails do not consider

such dynamic channel access schemes. What is more important, the existing work

only consider the simple case with two queues and one server/channel. However,

dynamic spectrum access networks generally need to support much more SUs. This

greatly complicates the queueing analysis because of the correlation and dependence

of the queue length of multiple SUs. Thus, the existing results can not be applied.

The rest of this section is organized as follows. In Section 5.2, we introduce system

model and formally define moment stability. In Section 5.3, we present the critical

conditions on the existence of moment stability. In Section 5.4, we propose maximum-

weight-β scheduling and prove its throughout optimality under heavy-tailed spectrum.

In Section 5.5, we explain the sufficient and necessary conditions of moment stabil-

ity under light-tailed spectrum and proves the throughout optimality of maximum-

weight-β scheduling.
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Figure 21: Multiuser dynamic spectrum access model.

5.2 Moment Stability

In this section, we first introduce the system model and then define moment stability

formally. Consider N SUs sharing a PU channel, as shown in Figure 21. Time is

slotted, with a unit slot length. Without loss of generality, we assume that the PU

channel is of unit capacity and modeled by an alternating renewal process, which

alternates between busy periods with length {Bi}i≥1 and idle periods with length

{Ii}i≥1. {Bi}i≥1 and {Ii}i≥1 are mutually independent random sequences of i.i.d.

random variables with distribution FB and FI , respectively. At each time slot, if

the PU channel is detected idle, one of the SUs can be scheduled to transmit one

packet per time slot. If the transmitted packet is collided with the PU transmission

because of miss detection, the packet is retransmitted in the future. Assume that

before the scheduling takes place, the PU channel detection result is available either

through cooperative sensing or through the fusion center [2]. Let pf denote the false

alarm probability. By renewal theory, we have the service rate (throughput) of the

PU channel as follows

µ :=
(1− pf )E[I1]

E[B1] + E[I1]
. (132)

Let qi denote the queue associated with SUi. In each time slot, a message arrives

to the queue qi with a probability λi. Let Li > 0 denote the number of packets in the

message that arrives to qi. Li is an independent and identically distributed (i.i.d.)

random variable (r.v.) from slot-to-slot, and is independent of the channel states

{Bi}i≥1 and {Ii}i≥1. Let Ai(t) denote the number of packets that arrive during time
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slot t to qi. Accordingly, the input rate Λi of the queue qi is given by

Λi := E[Ai(t)] = λiE[Li]. (133)

We assume
∑N

i=1 Λi < µ so that the system is steady-state stable under any work-

conserving scheduling policy, where every detected idle time slot of the PU channel

is used for transmitting SUs’ packets unless the SUs have empty queues. Let Qi(t)

denote the queue length of qi in time slot t. Let Qi denote the steady-state queue

length of qi.

Definition 10. A dynamic spectrum access network is moment stable if the steady-

state queue length of every secondary user i with light-tailed arrivals has finite mean

and variance, i.e., E[Qi] < ∞ and V ar[Qi] < ∞, ∀i ≤ N,Ai(t) ∈ LT .

In the following sections, we study the existence of the throughput-optimal schedul-

ing algorithms that can achieve moment stability by deriving the asymptotic tail

distribution of the steady-state length Qi.

5.3 Critical Conditions on the Existence of Moment Sta-
bility

In this section, we first study the existence of moment stability under the exclusive

access policy and the shared access policy, respectively. The former policy allows a SU

has exclusive access to the PU channel without competing with other SUs, while the

latter policy requires all SUs to share the PU channel. Under each policy, we study

the necessary conditions for the existence of moment stability by deriving the queue

length asymptotics of the SUs to determine the moment finiteness of the steady-state

queue length.

Let qe denote the queue associated with the SU, Qe(t) the queue length at time

slot t, and Qe the steady-state queue length.
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5.3.1 Main Theorems

Theorem 12. Assume the SU message size L ∈ RV(αl) and the PU busy time

B1 ∈ RV(αb) and let αl = ∞ or αb = ∞ indicate that L or B1 is light tailed. Then,

the steady-state queue length Qe of the SU satisfies

lim
t→∞

log[P (Qe > t)]

log t
= −min(αl, αb) + 1. (134)

Remark 17. The preceding results establish the relationship between the tail asymp-

totics of the message size L, the PU busy time Bi, and the queue length Qe. Specif-

ically, if either the busy time or message size is heavy tailed, then the steady-state

queue length is one order heavier than the one with the heavier tail. This result im-

plies that the expected queue length of the SUs can be infinite even if both the SU’s

transmitting messages and PU busy periods are of finite mean size. For example, if

the message size is LT and the PU busy time is heavy tailed with tail index 2 > αb > 1,

then both the message size and the PU busy time are finite. In this case, by Theorem

12 and Lemma 1 in Section 2, the steady-state queue length of the SU has a tail index

1 > κ(Qe) > 0, which implies that both the mean and variance of Qe are infinite,

implying that moment stability is not achievable. Moreover, by Theorem 12, it is ev-

ident that the detection results of the PU channel have no impact on the asymptotic

behavior of the queue length.

By Theorem 12 and Lemma 3, the critical conditions on the existence of moniment

stability is given by the following corollary.

Corollary 3. If the channel busy time Bi has a tail index αb < 3, the SU neces-

sarily has the steady-state queue length with unbounded variance, which implies the

nonexistence of moment stability.

Next, we study the critical conditions on the existence of moment stability under

shared access policy by investigating the asymptotic performance of the SU queue
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length under the general work conserving scheduling policies, where all the detected

idle time of the PU channel are occupied for the SUs transmissions unless the SUs

have empty queues.

Theorem 13. If 1 < αb < min1≤i≤N αli, then under any work conserving scheduling

policy, the steady-state queue length Qi of any SU i ≤ N is one order heavier than

the PU busy period, i.e.,

κ(Qi) = αb − 1, ∀1 ≤ i ≤ N (135)

Theorem 14. Assume αb ≥ min1≤i≤N αli > 1 . Let α− := min1≤i≤N αli. Under

any work-conserving policy, the steady-state queue length Qi of the queue qi with the

smallest tail index αli = α− follows

κ(Qi) = αli − 1 = α− − 1, (136)

while the steady-state queue length Qi of any other queue qi with αli > α− follows

min(αli , αb)− 1 ≥ κ(Qi) ≥ α− − 1. (137)

Remark 18. We can see from Theorem 13 that if the PU busy time has a heavier

tail than the input traffic of any SU, then the tail asymptotic of the queue length is

insensitive to the choice of a scheduling policy. In this case, under any work conserv-

ing policy, the tail distribution of the SU queue length is always one order heavier

than that of the PU busy time. In contrary, by Theorem 14, if at least one of the SU

queues has the input traffic with a heavier tail than the PU busy time, only the queue

fed by the traffic with the heaviest tail exhibits the asymptotic behavior independent

of the choice of a scheduling policy, while the other queues have bounded asymptotic

performance. The above observations indicate that to guarantee the moment stability

of the secondary network, the tail index αb of PU busy time has to be larger than

three.
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By Theorem 13 and Theorem 14, the critical conditions on the existence of moment

stability under shared access policy is given by the following corollary.

Corollary 4. If the channel busy time Bi has a tail index αb < 3, there exists no

scheduling algorithm that can achieve moment stability, which means all SUs neces-

sarily have the steady-state queue length with unbounded variance.

5.3.2 Proof of the Critical Conditions for Exclusive Access Policy

To prove the critical conditions given in corollary 3, it is sufficient to prove Theorem

12.

Fictitious Queues To prove Theorem 12, we construct two fictitious queues, namely

the slow queue q̃s and the fast queue q̃f , which have the same packet arrivals, expe-

rience the same PU channel activities, and obtain the same PU channel detection

results as queue qe, but receive different services. Without loss of generality, for each

queue, we assume that the first message arrives at the beginning of an idle period of

the PU channel. As for the slow queue q̃s, the transmission of a new message always

starts at the beginning of an idle period. This means that even if the transmission of

the current message is over in the middle of an idle period, the transmission of the

next message is not initiated until the next idle period begins. Thus, during the same

time interval, less messages are served in the slow queue q̃s than in the original queue

qe. This implies that

Qs(t) ≥ Qe(t). (138)

As for the fast queue q̃f , if the transmission of a message is finished in the middle

of an idle period, we do not count this idle period in its service time so that each

message waiting in the queue starts to be served from the beginning of the idle period

during which the transmission of the previous message is finished. If a message arrives

when the queue is empty, we consider two scenarios. (1) If it arrives at the beginning
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of an idle period, its service time will not include the idle period during which its

transmission is finished. Otherwise, (2) if it arrives in the middle of an idle period,

we treat this message as if it arrives at the beginning of the idle period. It is easy to

verify that during the same time interval, more messages are served in the fast queue

q̃f than in the original queue qe. This implies that

Qf (t) ≤ Qe(t). (139)

By (138) and (139), we obtain

P (Qf (t) > t) ≤ P (Qe(t) > t) ≤ P (Qs(t) > t). (140)

We will next prove Theorem 12 by showing that the lower and upper bounds in

(140) asymptotically coincide. Towards this, we derive the tail asymptotics of the

steady-state queue length for the slow queue q̃s and the fast queue q̃f , respectively.

5.3.2.1 Queue Length Asymptotics of Queue q̃f

Lemma 13. Assume the SU message size L ∈ RV(αl) and the PU busy time B1 ∈

RV(αb) and let αl = ∞ or αb = ∞ indicate that L or B1 is light tailed. Then the

steady-state queue length Qf of the SU satisfies

lim
t→∞

log[P (Qf > t)]

log t
= −min(αl, αb) + 1. (141)

To prove Lemma 13, we first define the transmission time of a message with size L

in the fast queue q̃f . The construction of q̃f indicates that the transmission attempt

of a packet is always started at the beginning of an idle period. In addition, the

last idle period during which the transmission is finished is excluded from the service

time. Accordingly, we have the service time Tf (L) of transmitting a message of size

L in the queue q̃f as follows. During an idle period Ii, let e(j) denote the event that

the PU channel is detected idle at time slot j and 1e(j) denote the indicator function

of the event e(j) where 1e(j) = 1 iff the event e(j) occurs.
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Definition 11. During an idle period with length Ii, the transmission time Xi of the

SU is defined as

Xi :=

Ii∑
j=1

1e(j), (142)

the total number of idle periods the SU occupies for transmitting a message of size

L,excluding the last idle period during which the transmission is finished, is defined

as

Mf := inf

{
m :

m∑
i=1

Xi ≥ L

}
− 1, (143)

and for the fast queue q̃f , the total service (transmission) time Tf (L) of a message of

size L is defined as

Tf (L) :=

Mf∑
i=1

{Ii +Bi} . (144)

The tail asymptotics of the transmission time Tf is given by the following Lemma.

Lemma 14. Assume that Bi ∈ RV(αb). If L ∈ LT or L ∈ RV(αl) with αb < αl, we

have

P (Tf (L) > t) ∼ E[Mf ]P (B1 > t). (145)

Assume that L ∈ RV(αl) and E[L] < ∞.

1. If Bi ∈ LT, we have

P (Tf (L) > t) ∼ P

(
L >

E[X1]

E[I1] + E[B1]
t

)
. (146)

2. If Bi ∈ RV(αb) with αl < αb, we have

P (Tf (L) > t) ∼
(
E[B1]

E[X1]

)αl

P (L > t)

+

(
E[I1]

E[X1]

)αl

P (L > t). (147)

3. If Bi ∈ RV(αb) with αl = αb, we have

P (Tf (L) > t) ∼
(

E[I1]

E[X1]

)αl

P (L > t)

+(E[B1])
αlP (L > t)

+E[Mf ]P (B1 > t). (148)
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Remark 19. From the above results, we see that the tail distribution of the message

transmission time is as heavy as either the SU’s message size or the PU busy time,

whichever has the heavier tail.

Proof of Lemma 14. The proof follows the similar arguments of proving Theorem 4 -

7 in Chapter 3.

We are now ready to prove Lemma 13 regarding the tail asymptotics of queue

length of the fast queue q̃f .

Proof of Lemma 13. Let Qm denote the steady-state number of messages waiting in

the queue. Thus, Qm is actually the steady-state queue length of a GI/G/1 queue,

with the message arrival rate λ and service time Ts(L). Since each message i that

arrives to the queue q̃f consists of Li packets, the steady-state queue lengthQf satisfies

Qm−1∑
i=1

Li ≤ Qf ≤
Qm∑
i=1

Li. (149)

We next prove that the lower and upper bounds match asymptotically by considering

the following three cases.

(1) If Bi ∈ RV(αb) and L ∈ LT or L ∈ RV(αl) with αb < αl, it follows by Lemma

14 that the service time Tf (L) ∈ RV(αb), which implies that Tf (L) is subexponentially

distributed. Let ρ = λE[Tf (L)] is the traffic intensity. By applying Theorem 1 in [7],

the steady-state waiting time Wm of a message in the queue is given by

P (Wm > t) ∼ ρ

1− ρ

∫ ∞

t

P (Tf (L) > x)

E[Tf (L)]
dx, (150)

which, by distributional Little’s law and regular variation, yields

P (Qm > t) ∼ P (λWm > t) ∼ λαb+1E[M ]

(1− ρ)(αb − 1)
tP (B1 > t). (151)

This implies that Qm ∈ RV(αb − 1). Combining (149) and (151), it follows from the

sum property of random number of regularly varying random variables [17] that

P (Qf > t) ∼ λαb+1E[M ]E[L]αb

(1− ρ)(αb − 1)
tP (B1 > t). (152)
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(2) If L ∈ RV(αl) with E[L] < ∞ and Bi ∈ LT, by Lemma 14, we have Tf (L) ∈

RV(αl) and thus Tf (L) is subexponentially distributed. By the similar arguments for

the case (1), we have

P (Qf > t) ∼ λαl+1 ((E[I1] + E[B1])E[L])αl

(1− ρ)(αb − 1)E[X1]
αl

tP (L > t). (153)

(3) If L ∈ RV(αl) with E[L] < ∞ and Bi ∈ RV(αl) with αl ≤ αb, this implies by

Lemma 14 and the properties of slowly varying function that Tf (L) ∈ RVαl . By the

similar arguments for the case (1) and (2), we have Tf (L) ∈ RV(αl − 1).

By the similar techniques, it can be shown that the steady-state queue length

of slow queue Qs has the same asymptotic performance as the fast queue Qf . This

indicates by (140) that the lower and upper bounds of the queue length Qe coincide,

which completes the proof of Theorem 12.

5.3.3 Proof of the Critical Conditions for Shared Access Policy

To prove the critical conditions given in corollary 4, it is sufficient to prove Theorem

13 and 14.

Proof of Theorem 13. Since the best scheduling scheme for a particular queue qi is to

let it receive service whenever the queue is not empty. In this case, qi behaves as if it

has exclusive access to the PU channel and no other queues compete for the service.

Under this scheduling policy, qi behaves like qe. Thus, under any work conserving

policy, we have Qi(t) > Qe(t) and thus P (Qi > t) > P (Qe > t), which, by Theorem

12 and the assumption αb < min1≤i≤N αli , implies that the upper bound of the tail

index of Qi satisfies

κ(Qi) ≤ min(αb, αli)− 1 ≤ αb − 1. (154)

Moreover, since P (Qi > t) ≤ P (
∑N

i=1Qi > t), invoking Lemma 15, we have the lower

bound of the tail index of Qi, i.e.,

κ(Qi) ≥ min( min
1≤i≤N

αli , αb)− 1 ≥ αb − 1, (155)
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which agrees with the upper bound and completes the proof.

Proof of Theorem 14. We first prove the asymptotic results in (136) regarding the

queue qi with the input process of the heaviest tail, i.e., the smallest tail index αli =

argmin1≤i≤N αli . It is evident that the queue length Qi is stochastically dominated

by the composite queue length
∑N

i=1Qi, which, by Lemma 15 and the assumption

αli ≤ αb, proves the lower bound of (136), i.e., κ(Qi) ≥ αli − 1.

As to the upper bound, we consider the best scheduling policy for qi, which allows

qi to receive the service whenever qi is not empty. This policy yields the best asymp-

totic results for the queue qi since qi does not have to compete with other queues

for the service and thus behaves like qe. Invoking Theorem 12, it follows from the

assumption αli ≤ αb that the lower bound in (136) holds, i.e., κ(Qi) ≤ αli − 1, which

matches the upper lower and proves (136).

Using the similar arguments, we can prove (137) by showing that the tail asymp-

totics of the queue length Qi are lower bounded by those of the composite queue

length and upper bounded by those of the queue qe. The details are omitted in the

interest of brevity.

5.4 Throughput-optimal Scheduling under Heavy-tailed Spec-
trum

In this section, we first introduce maximum-weight-β scheduling and then prove its

throughput optimality under the bursty spectrum with heavy-tailed channel busy

time. To investigate the effectiveness of the scheduling policy, in this section we

assume that the channel busy time has a tail index αb > 3, which by corollary 4, is

the necessary conditions on the existence of a feasible scheduling algorithm that can

achieve moment stability.

95



5.4.1 Maximum-Weight-β Scheduling

The maximum-weight-β scheduling works as follows. For N queues {qi}1≤i≤N , each

queue qi is assigned with a positive parameter βi. During each time slot t, the queue

qi, which satisfies the condition

Qi(t)
βi = max

1≤j≤N
Qj(t)

βj (156)

wins the competition and one packet from this queue is served provided that the

PU channel is detected idle. Ties are broken arbitrarily. If all parameters {βi}1≤i≤N

are equivalent, maximum-weight-β scheduling becomes the conventional maximum-

weight scheduling, where at each time slot, the largest queue is served.

The asymptotic analysis of the queue length distribution in this section shows that

the well-known maximum-weight scheduling leads to the worst possible asymptotic

behavior for the SU queues such that each queue can have a queue length with the

heaviest possible tail, which indicates that as long as one SU queue has unbounded

delay or variance, so do all SU queues. On the contrary, the maximum-weight-β

scheduling is proven to yield the best asymptotic performance for the SU queues by

letting each queue have the smallest possible tail. In other words, the maximum-

weight-β schedule is asymptotically optimal because it can ensure the queue length

has the same asymptotic performance as the exclusive access case, which is the best

performance one can expect.

5.4.2 Throughput Optimality

Theorem 15. Let αi := min(αli , αb) > 1, i.e., E[Li] < ∞ and E[B] < ∞, and

α− := min1≤i≤N αi. Define

αm
i = min

1≤j≤N

βi

βj

(αj − 1). (157)
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Under Maximum-Weight-β scheduling, the tail index of the steady-state queue length

Qi for SU i follows

κ(Qi) = max(αm
i , α

− − 1). (158)

Remark 20. (Ineffectiveness of Maximum Weight Scheduling) From the

above results, we see that if all parameters {β}1≤i≤N are equivalent, all queues have

the same tail index as the heaviest queue which has the smallest tail index equal to

min1≤j≤N(αj − 1). This implies that the maximum-weight scheduling leads to the

worst possible tail asymptotics for the SU queues so that the queue length of each

queue has the lowest orders of the finite moments. In this case, if among all queues,

the queue qi is fed by the traffic with the smallest tail index 1 < αli < 2, then under

maximum-weight scheduling, all the queues have the infinite mean steady state queue

length.

Remark 21. (Asymptotic Optimality of Maximum Weight-β Scheduling)

Theorem 15 indicates that by adjusting the parameters {βi}1≤i≤N , the maximum-

weight-β scheduling can lead to the best possible asymptotic queue length performance

which is as good as that under the case where the queue has the exclusive access to the

PU channel. To see this, recalling Theorem 14, the best tail performance (the largest

tail index) of the queue length Qi is that κ(Qi) = αi − 1 = min(αli , αb) − 1. Our

objective is as follows.

Find {βi}1≤i≤N

Such that αi − 1 = min
1≤j≤N

βi

βj

(αj − 1) ∀1 ≤ i ≤ N

One feasible solution to the above optimization problem is given by

βi = αi − 1, ∀1 ≤ i ≤ N. (159)

The feasibility of this solution can be easily verified by inserting (159) into (157).
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Corollary 5. Assigning each queue qi with a weight βi = αi − 1, maximum weight-β

scheduling is throughput optimal with respect to moment stability.

Proof. This corollary holds based on Theorem 15. Specifically, we assign each qi with

LT arrivals with a weight βi = αi − 1 = min(αli , αb) − 1. For LT arrivals, we have

αli = ∞. This implies βi = αb − 1, which, combining with the assumption that the

tail index of PU busy time αb > 3, implies that βi > 3. It follows by Theorem 15 that

the tail index κ(Qi) of the steady-state queue length Qi for each qi is equal to βi, i.e.,

κ(Qi) = βi > 3. This implies that all queues with light tailed arrivals have bounded

queue length with finite mean and variance, provided that the sum of total incoming

rate Λii≤M , given in (133), is less than the channel throughout µ, given in (132).

The proof of Theorem 15 relies on Lemma 15, 16 and 17, which we state and prove

first.

Lemma 15. Define α− := min1≤i≤N αli. We have

κ

(
N∑
i=1

Qi

)
= min(αb, α

−)− 1. (160)

Proof of Lemma 15. Consider a fictitious queue qv which has the arrival process

Av(t) =
∑N

i=1Ai(t) and experiences the same PU channel as the original queuing

system. Since Ai(t) ∈ RV(αli), it implies by regular variation that the arrival process

Av(t) ∈ RV(α−), where α− = min1≤i≤N αli . Let Qv denote the steady state queue

length of qv, It follows by Theorem 12 that κ(Qv) = α− − 1. Let Qv(t) denote the

queue length of qv at time t. Under any work conserving policy in the original queu-

ing system, we have Qv(t) =
∑N

i=1Qi(t). This implies that Qv =
∑N

i=1Qi and thus

κ(
∑N

i=1Qi) = α− − 1. This completes the proof.

Lemma 16. Under Maximum-Weight-β scheduling, the tail index κ(Qi) of the steady-

state queue length Qi is lower bounded by

κ(Qi) ≥ αm
i . (161)
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Proof of Lemma 16. For any 1 > δ > 0, we have

P (Qi > t) = P

(
Qi > t ∧

{∩
j ̸=i

Q
βj
βi
j < δt

})

+P

(
Qi > t ∧

{∪
j ̸=i

Q
βj
βi
j ≥ δt

})
:= I + II. (162)

As to the term I, it denotes the probability that the queue qi has a queue length

Qi larger than t, when all the other queues have a queue length less than (δt)βi/βj ,

i.e., Qj < (δt)βi/βj , ∀j ̸= i. Without loss of generality, we assume that this event

occurs at time 0, which means Qj(0)
βi/βj < δt. Let −τ denote the last time when

some of the queues j ̸= i receive service. We have two implications. (1) Qi(−τ)βi <

Qj(−τ)βj , ∀j ̸= i since qi did not receive service at time −τ . (2) Qj(−τ)βj/βi < δt,

∀j ̸= i since qj did not receive service during the time interval [−τ + 1, 0]. The two

implications imply that Qi(−τ) < δt. Thus, to ensure Qi(0) > t, the number of

packets accumulated in qi during the time interval [−τ + 1, 0] is at least larger than

(1− δ)t, i.e.,
∑0

n=−τ+1(Ai(n)−Ci(n)) > (1− δ)t, where Ci(n) denotes the number of

packets that depart from qi at time n. Thus, we obtain the upper bound of I

I ≤ P

(
0∑

n=−τ+1

(Ai(n)− Ci(n)) > (1− δ)t,∃τ ≥ 0

)

= P

(
sup
τ≥0

Sτ > (1− δ)t

)
= P (Qe > (1− δ)t) ,

where Sτ :=
∑0

n=−τ+1(Ai(n) − Ci(n)). The last equality holds since supτ≥0 Sτ is

actually the event that a single server queue (a queue having exclusive access to the

PU channel) has a queue length beyond (1− δ)t at time 0. It follows by Theorem 12

that

κ(Qe) = min(αli , αb)− 1 = αi − 1. (163)
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As to the term II, it follows by union bound that

II = P

(∪
j ̸=i

{
Qi > t ∧Q

βj
βi
j ≥ δt

})

≤
∑
j ̸=i

P

(
Qi > t ∧Q

βj
βi
j ≥ δt

)
≤

∑
j ̸=i

P

(
Qi +Qj ≥ (δt)

βi
βj

)
. (164)

Invoking Lemma 15, we have κ(Qi + Qj) = min(αi, αj) − 1. It follows from Lemma

1 that

κ((Qi +Qj)
βj/βi) = min

(
βi

βj

(αi − 1),
βi

βj

(αj − 1)

)
, (165)

which, by Lemma 1, implies that

∑
j ̸=i

P

(
(Qi +Qj)

βj
βi ≥ (δt)

)
∼ P

(
(Qi +Qj∗)

βj∗
βi ≥ (δt)

)
(166)

and

κ((Qi +Qj∗)
βj∗
βi ) = min

{1≤j≤N}

βi

βj

(αj − 1) = αm
i . (167)

Combining with (162), (163), (164), and (166) yields

P (Qi > t) . P (Qe > (1− δ)t) + P

(
(Qi +Qj∗)

βj∗
βi ≥ (δt)

)
(168)

by which, we obtain the upper bound of the steady-state queue length Qi under two

cases.

(1) If αi − 1 < αm
i , it follows by (163) and (167) that κ(Qe) < κ((Qi + Qj∗)

βj∗
βi ),

which, by Lemma 1, implies that

∑
j ̸=i

P

(
(Qi +Qj)

βj
βi ≥ (δt)

)
= o(P (Qe > (1− δ)t)) (169)

by which we obtain from (168) that

lim sup
t→∞

[log(P (Qi > t))]

log t
≤ lim sup

t→∞

log[P (Qe > (1− δ)t)

log t
. (170)
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This implies from (163) that

κ(Qi) ≥ κ(Qe) = αi − 1. (171)

(2) If αi−1 ≥ αm
i , we have κ(Qe) < κ((Qi+Qj∗)

βj∗
βi ). It follows by Lemma 1 that

P (Qe > (1− δ)t) = o

(∑
j ̸=i

P

(
(Qi +Qj)

βj
βi ≥ (δt)

))
. (172)

This, combining (167) and (168), yields

κ(Qi) ≥ κ((Qi +Qj∗)
βj∗/βi) = αm

i , (173)

which, in conjunction with (171), completes the proof.

Lemma 17. Under Maximum-Weight-β scheduling, the tail index κ(Qi) of the steady-

state queue length Qi is upper bounded by

κ(Qi) ≤ αm
i . (174)

Proof of Lemma 17. To prove Lemma 17, we construct a fictitious queuing system,

which consists of N queues {qi}1≤i≤N . Each queue qi has the same input process as qi

and is associated with a dedicated PU channel i. All PU channels have the same PU

activities and the same channel detection results as the PU channel in the original

system. Each queue follows the same regulations as the fast queue q̃f .

Consider a particular queue qi. We let all the queues {qj}j ̸=i except qi have the

exclusive access to their own dedicated PU channel j without competing with each

other. The queue qi receives service if and only if Q
βi

i = max1≤j≤N Q
βj

j . In such a

system, it is easy to prove that the fictitious queue qi has shorter queue length than

the queue qi in the original system, i.e.,

Qi(t) ≥ Qi(t). (175)

We assume that the fictitious system is in the steady state. Let pj denote the proba-

bility that the queue qj ̸=i is not empty, i.e., pj := P (Qj > 0). Let Ej denote the event
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where qj is not empty and all other queues are empty, i.e.,

Ej :=

{
Qj ̸= 0 ∧

∩
k ̸=i,j

Qk = 0

}
(176)

and P (Ej) := pj
∏

k ̸=i,j(1− pk). Thus, by (175), we have the lower bound of moments

of Qi with any order d

E[Qd
i ] ≥

∑
j ̸=i

P (Ej)E
[
Q

d

i |Ej
]
. (177)

In the rest of the proof, we will derive the lower bound of the conditional moments

E[Q
d

i |Ej]. We first define the following denotations for the queue qj. Assume that

the event Ej occurs at time t. Let Lr
j(t) denote the residual length of the message

currently in service, which is the number of packets that belongs to this message but

still remain in the queue at time t. Let L̃r
j(t) denote the residual length of the message

currently in service if the queue is served at every time slot of the PU channel. Since

actually, the queue can be only served at the idle time periods of the PU channel,

this implies that

Lr
j(t) > L̃r

j(t). (178)

Let Ls
j(t) denote the age of the message currently in service, which is the number

of packets from this message that are already served. Let T r
j (t) and T s

j (t) denote

respectively the residual and the expanded service time of the message currently in

service. From renewal theory and Lemma 14, we have

κ(L̃r
j(t)) = αlj − 1 (179)

and if B1 ∈ RV(αb) and P (Lj > t) = o(P (B1 > t)), then

P (T s
j (t) > t) ∼ C1tP (B1 > t), (180)

where C1 is a constants. Otherwise, if Lj ∈ RV(αlj) and P (B1 > t) = o(P (Lj > t)),

then

C2tP (Lj > t) . P (T s
j (t) > t) . C3tP (Lj > t), (181)
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where C2 and C3 are some constants. By renewal theory, it follows from (180) and

(181) that

κ(T s
j (t)) = κ(T r

j (t)) = min(αlj , αb)− 1 = αj − 1. (182)

We are now ready to prove the lower bound of the conditional moments E[Q
d

i |Ej].

If the event Ej occurs, then two possible events, Γ(t) and Γc(t), occur to Qi(t). Define

Γ(t) = {Qi(t)
βi ≥ T r

j (t)
βj} and its complement Γc(t). If Γ(t) occurs, we have

Qi(t) ≥ T r
j (t)

βj
βi . (183)

Otherwise, if Γc(t) occurs, there are two possibilities including (1) Lr
j(t)

βj < Qi(t)
βi <

T r
j (t)

βj , and (2) Qi(t)
βi < Lr

j(t)
βj . In the case (1), it implies from (178) that

Qi(t) ≥ Lr
j(t)

βj
βi ≥ L̃r

j(t)
βj
βi . (184)

In the case (2), let τ denote the last time before t that qi receives service. This means

that Qj(τ)
βj < Qi(τ)

βi . This, combining with the fact that Qj(t)
βj ≥ Lr

j(t)
βj >

Qi(t)
βi > Qi(τ)

βi , implies that the burst being served at time t did not begin to

receive service at τ , i.e., t− τ > T s
j (t). This implies that

Qi(t) =
t−τ∑
k=1

Ai(k) +Qi(τ) ≥
T s
j (t)∑
k=1

Ai(k). (185)

Let ST s
j
:=
∑T s

j (t)

k=1 Ai(k). Applying Lemma 8, it follows from (180) and (181) and

κ(ST s
j
) = min(αlj , αb)− 1 = αj − 1. (186)

Let pΓ = P (Γ(t)) and pΓc = P (Γc(t)). Combining (177), (183), (184) and (185),

we obtain
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E[Qd
i ] ≥

∑
j ̸=i

P (Ej)
(
pΓE

[
T r
j (t)

dβj
βi

]
+pΓcE

[
min(L̃r

j(t)
dβj
βi , (ST s

j
)d)

])
≥

∑
j ̸=i

P (Ej)
(
pΓE

[
T r
j (t)

dβj
βi

]
+pΓc min(E

[
L̃r

j(t)
dβj
βi

]
, E
[
(ST s

j
)d
]
)

)
. (187)

This, combining with (179), (182), and (186), implies that if the order of the

moments d ≥ minj ̸=i
βi

βj
(αj − 1), then at least one of the terms on the right hand of

(187), is infinite, which implies

κ(Qi) ≤ min
j ̸=i

βi

βj

(αj − 1). (188)

Moreover, since under any working conserving scheduling policy, Qi is lowered bounded

by Qe. This implies that

κ(Qi) ≤
βi

βi

(αi − 1), (189)

which, combining with (188) completes the proof.

Proof of Theorem 15. By Lemma 17 and 16, it follows that the upper and lower

bounds of κ(Qi) matches, This, combining the fact that κ(Qi) ≥ α− − 1 by Theorem

14, completes the proof.

5.5 Throughout-optimal Scheduling under Light-tailed Spec-
trum

In the previous sections, we show that maximum weight-β scheduling is throughput

optimal with respect to moment stability under a single HT PU channel, in which

the busy periods of PU channel follow HT distribution. In this section, we investigate

the necessary and sufficient conditions under which maximum weight-β scheduling is

throughput-optimal under hybrid HT and LT traffic arrivals but with LT PU channels.
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We consider a dynamic spectrum access network consisting of N SUs and M PU

channel, as shown in Figure 22. Time is slotted and during each time slot, only

one packet is transmitted. Let S = (S1(t), S2(t), ..., SM(t) denote the states of PU

channels. Si(t) ∈ {0, 1},∀i ∈ 1, ...,M with Si(t) = 0 if channel i is busy and Si(t) = 1

if channel i is idle. The processes (S1(t), S2(t), ..., SM(t) are independent with each

other and Si(t) are i.i.d. from slot to slot, distributed according to Bernoulli process

with expected mean pi, i.e., P (Si(t) = 1) = pi. At each time slot t, each secondary

user i ∈ {1, 2, ..., N} receives Ai(t) packets, which is i.i.d. from slot to slot, and the

arrival process Ai(t), i = 1, ..., N is independent from each other and independent of

the PU channel states. At each time slot, a scheduling/control policy allocates the

detected idle channels to the secondary users with knowledge only of the current queue

lengths and instantaneous channel states. Since our primary objective is to study the

impact of heavy tailed traffic on network stability, we consider the scenario where

the sensing errors are negligible. The above network model presents the downlink

or uplink scheduling problem for the centralized networks. The practical networks

represented by this model include cellular, WiFi and mesh networks with coexisting

licensed and unlicensed users.

Let Qi(t) denote the number of packets in the queue qi of secondary user i by

the end of time slot i. Define hij(t) as the number of packets which can be released

from queue i if channel j is allocated to queue i at time slot t. Based on the above

model, hij ∈ {0, 1},∀i, j. Then, the queueing dynamics of the secondary user i can

be represented by

Qi(t+ 1) = Qi(t)−
M∑
j=1

hij(t)Sj(t) + Ai(t) (190)
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Figure 22: Multichannel dynamic spectrum access model.

subject to

hij(t) ∈ {0, 1}, ∀i, j (191)

0 ≤
M∑
j=1

hij(t) ≤ 1 ∀i (192)

0 ≤
N∑
i=1

hij(t) ≤ 1 ∀j (193)

where the second constraint implies that each secondary user can only be allocated

with one channel, while the third constraint means that each channel can only be

assigned to one secondary user. By defining Hi(t) as the number of packets which de-

part from queue i at time slot t under a certain control policy, the queueing dynamics

in (190) can be rewritten by

Qi(t+ 1) = Qi(t)−Hi(t) + Ai(t) (194)

Note that based on the above model, Hi(t) ∈ {0, 1},∀i = 1, ..., N .

5.5.1 Necessary Condition of Moment Stability

In this and next sections, we derive the necessary and sufficient conditions under

which there exists a feasible scheduling policy to achieve moment stability.

Theorem 16. If there exists a scheduling policy that is throughput optimal with re-

spect to moment stability of the system, then

∑
i∈Q

λi ≤ |Q| −
|Q|∑
k=1

P (K < k), ∀Q ⊂ {1, ..., N} (195)
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where λi = E[Ai(t)], |Q| denotes the cardinality of set Q, and K is the number of idle

channels among total M channels at each time slot t, which follows poisson binomial

distribution, denoted by K ∼ PB(p,M), p = (p1, ..., pM), i.e.,

P (K < k) =
k∑

l=0

∑
A∈Fl

(∏
j∈A

pj
∏
j∈Ac

(1− pj)

)
, (196)

where Ac is the complementary set of A, and Fl is the collection of all subsets of l

integers that are selectable from set {1, ...,M}.

Remark 22. Intuitively speaking, the right hand in (195) is the maximum time-

average throughput the cognitive radio network can achieve, under the constraints that

at each time slot, each secondary user can only access one PU channel, while each

PU channel can only serve one secondary user. It can be shown that the inequality in

(195) is also the necessary condition for the existence of the strong stability provided

that such stability is achievable

Proof. Suppose the system is moment stable under certain resource allocation policy,

which, by Definition implies that the system is steady-state stable. This means for

each queue, the incoming rate is equal to the service rate, i.e., E[Ai(t)] = E[Hi(t)].

Thus, for any subset Q ⊂ {1, .., N}, we have∑
i∈Q

E[Ai(t)] =
∑
i∈Q

E[Hi(t)] (197)

which, by defining K(t) as the number of idle channels at time slot t, can be rewritten

as ∑
i∈Q

E[Ai(t)] = E

[
E

[∑
i∈Q

Hi(t)|K(t), Qi(t− 1), i ∈ Q

]]
(198)

The event B = {K(t), Qi(t− 1), i ∈ Q} can be partitioned into three disjoint sets

B1 = {K(t) = 0}

B2 = {K(t) = 0}c ∧ {Qi(t− 1) = 0, i ∈ Q}

B3 = {K(t) = 0}c ∧ {Qi(t− 1) = 0, i ∈ Q}c (199)
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It is easy to verify that

E

[∑
i∈Q

Hi(t)|Bi

]
= 0, i = 1, 2 (200)

As to event B3, we can further divide it into two disjoint sets

B
(1)
3 = {K(t) < |Q|} ∧ {Qi(t− 1) = 0, i ∈ Q}c

B
(2)
3 = {K(t) ≥ |Q|} ∧ {Qi(t− 1) = 0, i ∈ Q}c (201)

which, in conjunction with (200) and (198), implies

∑
i∈Q

E[Ai(t)] = E

[∑
i∈Q

Hi(t)1B(1)
3

]
+ E

[∑
i∈Q

Hi(t)1B(2)
3

]
(202)

Define kj = {K(t) = j} ∧ {Qi(t − 1) = 0, i ∈ Q}c as the event that there are j idle

channels and at least one of the queues is not empty. For the first term on the right

side of (202), we have

E

[∑
i∈Q

Hi(t)1B(1)
3

]
=

|Q|−1∑
j=1

∑
i∈Q

E[Hi(t)|kj]P (kj)

≤
|Q|−1∑
j=1

jP ({K(t) = j}

∧ {Qi(t− 1) = 0, i ∈ Q}c)

≤
|Q|−1∑
j=1

jP (K(t) = j) (203)

The second inequality is due to the fact that
∑

i∈QHi(t) ≤ K(t) if K(t) ≤ |Q| − 1.

For the second term on the right side of (202), we have

E

[∑
i∈Q

Hi(t)1B(1)
3

]
=

M∑
j=|Q|

∑
i∈Q

E[Hi(t)|kj]P (kj)

≤ |Q|
M∑

j=|Q|

P ({K(t) = j}

∧ {Qi(t− 1) = 0, i ∈ Q}c)

≤ |Q|P (K(t) ≥ |Q|) (204)
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The second inequality holds because the number of channels allocated can not exceed

the maximum number of queues, which implies
∑

i∈QHi(t) ≤ |Q| if K(t) ≥ |Q|.

Combining (202), (203), and (204), we have

∑
j∈Q

λj ≤
|Q|−1∑
j=1

jP (K(t) = j) + |Q|P (K(t) ≥ |Q|)

=

|Q|−1∑
j=1

(

|Q|−1∑
i=j

P (K(t) = i) + |Q|P (K(t) ≥ |Q|)

= |Q| −
|Q|∑
j=1

P (K(t) < j) (205)

Since K(t) follows poisson binomial distribution, this completes the proof.

5.5.2 Sufficient Condition of Moment Stability

We next prove the sufficient condition of Moment Stability under the maximum-

weight-β scheduling. More specifically, for N queues {qi}1≤i≤N , each queue qi is as-

signed with a positive parameter βi. During each time slot t, the scheduling algorithm

chooses the channel allocation which satisfies the condition

max
∑
i,j

hij(t)Qi(t)
βiSj(t) (206)

subject to (191), (192), and (193). More specifically, we assign queues with light

tailed arrivals, i.e., Ai(t) ∈ LT , with weight βi = 2. We assign queues with heavy

tailed arrivals, i.e., Ai(t) ∈ RV(αli), with weight βi = αli − 1.

Theorem 17. The dynamic spectrum access network is moment stable, if

∑
i∈Q

λi < |Q| −
|Q|∑
k=1

P (K < k) ∀Q ⊂ {1, ..., N} (207)

where K ∼ PB(p,M), p = (p1, ..., pM) and each queue i has the αi-th moment of

its steady-state queue length upper bounded by

E[Qi(t)
βi ] ≤ (−2N

d
)

N∑
i=1

Wi(−
d

2N
) (208)
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where d = maxQ⊂{1,...,N}

{∑
i∈Q λi −

∑|Q|
k=1 P (K > k)

}
and Wi() follows (213) if 1 ≤

αi ≤ βi and (215) if 0 < αi < 1 .

Remark 23. The Theorem above indicates that under the maximum weight-β schedul-

ing algorithm, each light-tailed SU queue can achieve moment stability. The major

advantage of this algorithm is that it can prevent the queues with heavy tailed arrivals

from impacting the queues with light tailed arrivals. For example, assume there ex-

ist three queues, with arrival processes of A1(t) ∈ RV(1.5), A2(t) ∈ RV(1.5), and

A3(t) ∈ LT . By setting proper value for β3, we can ensure that queue 3 has bounded

moments of any orders even though queue 1 and 2 still have unbounded delay (since

their maximum achievable order of unbounded moment is 0.5). Particularly, if letting

2 > β3 > 1, queue 3 is guaranteed to have bounded mean delay. If letting β3 > 2,

queue 3 will have bounded delay variance (jitter).

Proof. Let Q(t) = (Q1(t), ..., QN(t)) denote a vector process of queue lengths of N

secondary users. We define the Lyapunov function:

L(Q(t)) =
N∑
i=1

L(Qi(t)) (209)

where

L(Qi(t)) =
Qi(t)

βi+1

βi + 1
(210)

We next evaluate each term L(Qi(t)) under two cases:1 ≤ βi ≤ βli −1 and 0 < βi < 1.

For the first case, using queueing dynamics in (194) and Taylor’s expansions with the

Lagrange form of the remainder [33], we have

L(Qi(t+ 1))=
1

βi + 1
(Qi(t) + Ai(t)−Hi(t))

βi+1

=
Qi(t)

βi+1

βi + 1
+∆i(t)Qi(t)

βi + βi
∆i(t)

2

2
δβi−1

(211)

where ∆i(t) = Ai(t) − Hi(t) and δ = [Qi(t) − 1, Qi(t) + Ai(t)]. Therefore, by the

fact that ∆i(t)
2 ≤ Ai(t)

2 + 1 and (Qi(t) + Ai(t))
βi−1 < 2βi−1(Qi(t)

βi−1 + Ai(t)
βi−1),
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for any positive constant θ, we have

E[Li(Qi(t+ 1))− Li(Q(t))|Q(t)]

= Qi(t)
βiE[∆i(t)|Q(t)] +

βi

2
E[∆i(t)

2δβi−1|Q(t)]

≤ E[(Ai(t)−Hi(t))Qi(t)
βi|Q(t)]

+2βi−2βiE[Ai(t)
2 + 1]Qi(t)

βi−1

+2βi−2βiE[Ai(t)
βi+1 + Ai(t)

βi−1]

≤ E[(Ai(t)−Hi(t) + θ)Qi(t)
βi|Q(t)] +Wi(θ) (212)

where

Wi(θ) =
(
θ−12βi−2βiE[Ai(t)

2 + 1]
)βi−1

+2βi−2βiE[Ai(t)
βi+1 + Ai(t)

βi−1] (213)

The last inequality in (212) holds because 1 < βi < κ(Ai(t))− 1, which implies that

E[Ai(t)
2], E[Ai(t)

βi+1], and E[Ai(t)
βi−1] are finite.

For the second case 0 < βi < 1, by the similar arguments, we obtain

E[Li(Qi(t+ 1))− Li(Q(t))|Q(t)]

≤ E[(Ai(t)−Hi(t) + θ)Qi(t)
βi|Q(t)] +Wi(θ) (214)

where

Wi(θ) = θ + 1 + E[Ai(t)
βi+1]. (215)

By (209), (212), and (214), the conditional Lyapunov drift is upper bounded by

E[L(Q(t+ 1))− L(Q(t))|Q(t)]

≤
N∑
i=1

(
(λi + θ)Qi(t)

βi +Wi(θ)
)
− E

[
N∑
i=1

Hi(t)Qi(t)
βi|Q(t)

]
(216)

We now evaluate the expectation on the right side of (216). We first define the

following notations. At each time slot t, we arrange the queues in a decreasing order
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of their queue lengthes raised to the βi th power, i.e., Qq1(t)
β1 , ..., QqN (t)

βN with

Qqi(t)
βi ≥ Qqi+1

(t)βi+1 , where ties are broken randomly. Then, we have

E

[
N∑
i=1

Hi(t)Qi(t)
βi|Q(t)

]

=
M∑
j=1

E

[
N∑
i=1

Hi(t)Qi(t)
βi|Q(t), K(t) = j

]
P (K(t) = j)

=
M∑
j=1

P (K(t) = j)

j∑
i=1

Qqi(t)
βi

=
N∑
j=1

P (K(t) = j)

j∑
i=1

Qqi(t)
βi +

M∑
j=N+1

P (K(t) = j)
N∑
i=1

Qqi(t)
βi

=
N∑
j=1

Qqj(t)
βqj

N∑
i=1

P (K(t) = i) +
N∑
j=1

Qqj(t)
βqjP (K(t) > N)

=
N∑
j=1

Qqj(t)
βqjP (K(t) ≥ j) (217)

By some computations, we can rewrite (217) as follows

N∑
j=1

Qqj(t)
βjP (K(t) ≥ j)

=
N−1∑
j=1

(Qqj(t)
βj −Qqj+1

(t)βj+1)

j∑
n=1

P (K(t) ≥ n)

+QqN (t)
βqN

N∑
n=1

P (K(t) ≥ n) (218)

Similarly, we can obtain

N∑
i=1

Qi(t)
βiλi =

N∑
j=1

Qqj(t)
βjλqj

=
N−1∑
j=1

(Qqj(t)
βj −Qqj+1

(t)βj+1)

j∑
n=1

λqn +QqN (t)
βN

N∑
n=1

λqn (219)
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Combining (218), (219), and (216), we obtain

E[L(Q(t+ 1))− L(Q(t))|Q(t)]

=
N−1∑
j=1

(Qqj(t)
βj −Qqj+1

(t)βj+1)

j∑
n=1

λqn +QqN (t)
βN

N∑
n=1

λqn

−
N−1∑
j=1

(Qqj(t)
βj −Qqj+1

(t)βj+1)

j∑
n=1

P (K(t) ≥ n)

−QqN (t)
βqN

N∑
n=1

P (K(t) ≥ n) +
N∑
i=1

θQi(t)
βi +

N∑
i=1

Wi(θ)

≤
N−1∑
j=1

(
(Qqj(t)

βj −Qqj+1
(t)βj+1)

j∑
n=1

(λqn − P (K(t) ≥ n))

)

+QqN (t)
βN

N∑
n=1

(λqn − P (K(t) ≥ n)) +
N∑
i=1

θQi(t)
βi +

N∑
i=1

Wi(θ) (220)

By defining

d = max
Q⊂{1,...,N}

∑
i∈Q

λi −
|Q|∑
k=1

P (K > k)

 (221)

which is a negative constant by (207), we can rewrite (220) as

E[L(Q(t+ 1))− L(Q(t))|Q(t)]

≤ dQq1(t)
β1 +

N∑
i=1

θQi(t)
βi +

N∑
i=1

Wi(θ)

≤ (
d

N
+ θ)

N∑
i=1

Qi(t)
βi +

N∑
i=1

Wi(θ) (222)

The last inequality holds because q1 has the largest β-th power queue length. Letting

θ = −d/(2N), the Lyapunov drift can be bounded by

E[L(Q(t+ 1))− L(Q(t))|Q(t)]

≤ (
d

2N
)

N∑
i=1

Qi(t)
βi +

N∑
i=1

Wi(−
d

2N
) (223)

By Foster’s criterion for ergodic Markov chain, the queueing length process converges

in distribution. Using iterated mean and telescoping sums, we have

N∑
i=1

E[Qi(t)
βi ] ≤ (−2N

d
)

N∑
i=1

Wi(−
d

2N
) (224)
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where Wi() is defined in (213) and (215), respectively.

5.5.3 Throughput Optimality

The results in Theorem 16 and 17 prove the throughput optimality of maximum

weight-β scheduling with respect to moment stability, which is given by the following

Theorem

Theorem 18. The sufficient and necessary conditions for moment stability is

∑
i∈Q

λi < |Q| −
|Q|∑
k=1

(P (K < k)) ∀Q ⊂ {1, ..., N} (225)

where K ∼ PB(p,M), p = (p1, ..., pM) and the maximum weight-β scheduling de-

fined in (206) is throughput optimal, which stabiles any set of arrival rates within the

maximum obtainable stability region given in (225)

Remark 24. As indicated by (225), the network stability region of a cognitive ra-

dio network is characterized by the statistics of secondary user traffics, primary user

activities, the number of secondary users contending the spectrum, and the total num-

ber of primary user channels available to secondary users. This region holds for any

feasible work conserving policies, which utilize all idle slots of PU channels for trans-

missions unless secondary users have empty queues. Since work conserving policies

are feasible when sensing errors are negligible, (225) actually provides the outer bound

of the network stability region under any sensing performance.

Remark 25. It can be proven that the above stability region also holds for strong

stability if such stability exists. In this case, the network stability regions under the

two criterions overlap with each other. However, moment stability is stronger than

strong stability. Specifically, if the minimum tail coefficient of all arrivals is larger

than 2, both strong stability and moment stability exist, while the latter case not

only guarantees the finiteness of mean but also ensures the finiteness of the higher
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order moments, such as variance. This is a important property for the QoS oriented

applications such as on-line gaming and video conferencing.
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CHAPTER VI

MOBILITY IMPROVES DELAY-BOUNDED

CONNECTIVITY WITH HEAVY-TAILED SPECTRUM

6.1 Introduction

As a network-wide attribute, connectivity has to be maintained for reliable communi-

cations between transmitting and receiving parties in a network. For large-scale wire-

less networks, where full connectivity may be overly restrictive or difficult to achieve,

percolation-theory based connectivity is widely adopted [15] [25][53][43]. Percolation

theory concerns a phase transition phenomenon where the network exhibits funda-

mentally different behavior for the density λ below and above some critical density

λc. If λ > λc, the network is percolated or in the supercritical phase and it contains a

giant connected component, which consists of an infinite number of nodes. Otherwise,

If λ < λc , the network is in the subcritical phase and the network is partitioned into

small components containing a finite number of nodes.

Although percolation based connectivity can characterize the existence of routing

paths between network devices, it does not indicate the end-to-end QoS performance,

such as delay and jitter. What is more important, under heavy-tailed PU activities,

the primary network can generate heavy-tailed interference region within which the

secondary users will experience unbounded delay with infinite mean and/or variance

[57]. Therefore, it is of significant importance to study the delay-bounded connectivity

in wireless networks, which simultaneously ensures the existence of routing paths and

the finiteness of transmission delay along these paths.

Mobility, as the inherent nature of today’s wireless networks, has significant im-

pact on transmission delay. Specifically, for delay-tolerant networks, mobility has
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been exploited to increase network capacity at the cost of latency. Contrary to this

conventional belief, we show that mobility could actually help achieve delay-bounded

connectivity by improving the delay performance in wireless networks. More specif-

ically, by exploiting the spatial diversity of the spectrum availability, mobility can

allow SUs to evade from the heavy-tailed interference region induced by the primary

networks. This can further guarantee the delay boundness by preventing the rise of

the heavy-tailed delay. In this case, the critical question is how far secondary users

need to move so that they can evade from such giant and irregular interference region

as the density of the primary users increases.

This chapter aims to study the fundamental impact of heavy tailed PU activities

on the delay-bounded connectivity as well as how and to what extent mobility can

mitigate such impact [60][59][53]. More specifically, we show that such heavy tailed

spectrum activities significantly degrade the transmission latency of secondary users.

Specifically, it is proven that if the busy time of primary users is heavy tail distributed,

there always exists a critical density λp such that if the density of primary users is

larger than λp, the secondary users can experience unbounded average transmission

latency. To encounter this, the mobility of secondary users is utilized to exploit the

spatial diversity of the spectrum availability. In particular, it is shown that there

exists a critical threshold on the maximum radius the secondary user can reach,

above which the secondary network is percolated over time such that there exists

a giant component containing an infinite number of secondary users, in which the

transmission latency between any secondary users u and v is of finite mean. Moreover,

it is shown that this latency scales linearly in the Euclidean distance between u and

v as the distance approaches infinity.

The rest of this chapter is organized as follows. In Section 6.2, we introduce

network models. In Section 6.3, we formally define delay-bounded connectivity and

summarize the main results. In Section 6.4, we prove the necessary conditions on
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the existence of delay-bounded connectivity in a static secondary network, where all

secondary users are stationary. In Section 6.5, we derive the critical mobility radius

and study the end-to-end latency in the mobile secondary networks. In Section 6.6,

we present the simulation results.

6.2 Network Model

6.2.1 Heterogenous Network Architecture

We consider a heterogenous network setting, where there exist two networks: the

primary network and the secondary network, where the primary network has the pri-

ority to access the spectrum. The primary users and secondary users are distributed

according to the Poisson Point Process with density λp and λs, respectively, in an in-

finite two-dimensional space R2. The primary users can occupy the wireless channels

whenever they have traffic to deliver, while the secondary users dynamically access the

wireless channels that are not occupied by the primary users spatially or temporally.

In particular, let R denote the interference range of the primary users and r denote

the transmission radius of secondary users. A pair of secondary users can communi-

cate with each other at time t if their mutual distance is less than the transmission

radius r and they are outside of the interference range R of every active primary user

at t. Specifically, the communication link between two arbitrary secondary users can

be formally defined as follows.

Definition 12. Let Xi and Xj denote the location of secondary user SUi and SUj,

respectively. There exists a communication link between secondary user SUi and SUj

at time t if the following conditions are fulfilled

1. ||Xi −Xj|| < r

2. ||Xi − Y || > R and ||Xj − Y || > R, where Y is the location of any every active

primary user at time t.
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6.2.2 Primary Network Model

We model the primary network as a random disk graph denoted by G(λp, R). Specif-

ically, the primary users are distributed according to homogeneous Poisson point

process with density λp. Let Y n
i=1 denote the random locations of the primary users

{1, 2, ..., n}. With each primary user i as the center, place a disk with radius equal

to R if primary user i is active and equal to 0, otherwise.

To model the dynamic activities of primary users, we associate each primary user

with an alternating renewal process, denoted by S(t), which alternates between busy

periods {Bi}i≥1 and idle periods {Ii}i≥1, which are mutually independent random

sequences of i.i.d. random variables. This model has shown to be able to effectively

characterize the PU behavior and thus has been widely adopted in the research field

of conative radio networks [9] [18]. To effectively characterize the high burstiness in

the primary user traffic, e.g., multimedia and Internet traffic, we assume the busy

periods {Bi}i≥1 follows heavy-tailed distributions, while the idle periods {Ii}i≥1 can

be either light-tail or heavy-tailed distributed.

6.2.3 Secondary Network Model

We model the secondary network as a random geometric graph denoted by G(λs, r).

Specifically, the secondary users are distributed according to homogeneous Poisson

point process with density λs. Let X
n
u=1 denote the random locations of the secondary

users {1, 2, ..., n}. If the mutual distance between two secondary user is less than the

transmission range r, there exists a link between the two secondary users. Each link is

associated with a random variable T (L, euv), which denotes the time of transmitting

a message of random size L over link euv.

Throughout this work, we assume that the primary users are always static, while

the secondary users can be mobile. Particularly, we consider that the secondary users

move around in a confined region, where the maximum radius the secondary user
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can reach is denoted by a. Specifically, we assume that the secondary user is moving

around its initial location, which in practice can be the office or home address of the

secondary users. The representative model to characterize this mobility pattern is

constrained i.i.d. mobility model [26], which is formally defined as follows.

Definition 13. (Constrained i.i.d. Mobility Model)

Given the initial locations {X0
1 , ..., X

0
n} of secondary users u = 1, 2, ..., n at time 0. At

each time t = 1, 2, ..., the location X t
u of the secondary user u is uniformly distributed

in A(X0
u, a), which is the circular region centered at the initial location X0

u of u with

radius a > 0. The positions X t
u are mutually independent among all secondary users

and independent of all previous locations X t′
u , t = 0, 1, ..., t− 1.

6.3 Problem Formulation and Main Results

To study delay-bounded connectivity, we first define the transmission delay as follows.

When two secondary users u and v are connected in the secondary network G(λs, r)

with density λs and node transmission range r, there exists at least one path between

u and v consisting of links in the G(λs, r). When u transmits a message of size L, this

message can be delivered to v through different paths. For each path, we define the

transmission latency between u and v as the total time the message spends traveling

along this path, which is formally defined as follows.

Definition 14. Given an arbitrary path l(u, v) between u and v, the delay of trans-

mitting message of size L over path l(u, v) is

T (u, v) =

 ∑
eij∈l(u,v)

T (L, eij)

 , (226)

where T (L, eij) is the delay of transmitting a message of size L over the link eij of

the l(u, v) .

Based on the definition of transmission latency, we define the delay-bounded con-

nectivity for the secondary networks.
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Definition 15. A secondary network G(λs, r) is connected if there exists a giant

component C∞ containing an infinite number of secondary users, and there exists at

least one path between any secondary users u and v in this giant component so that

the transmission latency over this path is of finite mean and variance.

The first part of this work shows that because of the heavy tailed nature, T (u, v)

can have infinite mean or/and variance even if the Euclidean distance ||u−v|| is finite.

.

Theorem 19. Assume that the secondary network G(λs, r) is percolated and the busy

periods of primary users are heavy tailed with tail index α, i.e., B1 ∈ RV(α) with

α < 2. If

λp > λ∗
p =

λc

4(R2 − r2/4)
, (227)

where 1.43 < λc < 1.44, then the delay-bounded connectivity is not achievable in the

secondary network G(λs, r). In other words, given any two SU u and v in the giant

connected component of G(λs, r), for any path between u and v, if α < 1, then

E[T (u, v)] = ∞ (228)

and if 1 < α < 2, then

V ar[T (u, v)] = ∞ (229)

provided that the Euclidean distance between u and v, ||u− v|| > dc, where dc < ∞.

The above Theorem indicates that the heavy tailed nature of primary users can

induce infinite delay mean or/and jitter between a pair of secondary users even if

their mutual distance is finite. In other words, a message sent by a secondary user

can be only delivered to a small portion of nodes in the secondary network within

bounded delay. The intuitive explanation of this phenomenon is that since the busy

periods of primary users are heavy tail distributed, the transmission time over the

interfered links in G(λs, r) could be heavy tailed and of infinite mean. Thus, as the
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density of primary users increases, more links in G(λs, r) will exhibit heavy tailed

behavior so that all the pathes between two secondary users u and v will have at least

one link with the transmission time of infinite mean or/and variance. This implies

the infiniteness of E[T (u, v)] or/and V ar[T (u, v)].

However, when the secondary users are mobile, there is a probability that the

mean transmission latency E[T (u, v)] is finite even if the busy periods of primary

users are heavy tail distributed. For instance, when a secondary user u broadcasts

a message, all the secondary users that reside inside the connected component of

u and outside the interference range of any primary users can receive the message

within finite mean delay. As time goes on, nodes move and message is passed from

message-carrying nodes to new nodes whenever they are within communication range

and outside the interference range of any primary users. As this process goes on, the

message can be delivered within whole network without being affected by the heavy

tailed activities of the primary users. The following Theorem states the sufficient

condition on the maximum radius the secondary user should reach, under which the

boundary dc, defined in Theorem 19, on the maximum distance a message can travel

in the secondary network vanishes.

To distinguish from the static secondary network G(λs, r), we denote the mobile

secondary network by Gm(λs, r).

Theorem 20. If the maximum radius a the secondary user can reach is larger than

the threshold value a∗ < ∞, where

a∗ = argmin
a>0

((1− e−a2/5λs)2(1− (1− e−|RI |λp)N
I

) >
5

6
)

where |RI | = 2(r/
√
5+R)(2R+ r/

√
5) and NI = ⌊ (2/5)a2

RI ⌋, then the mobile secondary

network Gm(λs, r) achieves delay-bound connectivity such that there exists a giant

component C∞ containing an infinite number of secondary users, in which the trans-

mission delay between any secondary users u and v with ||u−v|| < ∞ is of finite mean
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and variance, i.e., E[T (u, v)] < ∞, ∀u, v ∈ C∞ and V ar[T (u, v)] < ∞,∀u, v ∈ C∞

Remark 26. By analyzing the expression a∗, it is easy to see that a∗ always exists

under any user densities, i.e., λs and λp, the transmission range r of secondary users,

and the interference range R of primary users. This means by properly adjusting the

mobility radius a, finite mean transmission latency can be always achieved. In other

words, the maximum transmission distance dc (shown in Theorem 19) induced heavy

tailed spectrum activities vanishes by exploiting the mobility of secondary users.

Now, assume the mobile secondary network Gm(λs, r) achieves delay-bounded

connectivity. Consider two secondary users u and v that are connected in Gm(λs, r).

When u broadcasts a message of size L, this message can be delivered to v through

different pathes. We define the first-passage latency between u and v as the first time

that v receives the message, which is formally defined as follows

Definition 16. Consider any two secondary users u and v. The the first-passage

latency from u to v is

Tp(u, v) = inf
l(u,v)∈P(u,v)

 ∑
eij∈l(u,v)

T (L, eij)

 (230)

where l(u, v) is an arbitrary path between u and v and P(u, v) is the set of paths from

u and v.

The following theorem characterizes the first-passage latency between the SU u

and v.

Theorem 21. For any secondary users u, v ∈ C∞, T (u, v) scales linearly with the

Euclidean distance between u and v as the distance approaches infinity, i.e.,

Pr

{
lim

||u−v||→∞

Tp(u, v)

||u− v||
= ρ′

}
= 1 (231)

where ρ′ is a strictly positive value.
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6.4 Delay-bounded Connectivity in Static Wireless Networks

In this section, we prove Theorem 19 which shows that under the heavy tailed ac-

tivities of primary users, the static secondary network, where all secondary users are

stationary, can not achieve delay-bounded connectivity with unbounded end-to-end

delay with infinite mean and variance. First, we evaluate the the lower bound of the

transmission time T (L, euv) over a link euv in G(λs, r), when the link is interfered by

the transmissions of primary users. This implies that at least one of u and v is resid-

ing within the interference range R of some primary users. In this case, the link euv

is available for secondary users only if all the interfering primary users are inactive.

Therefore, T (L, euv) can be lower bounded by T (L), i.e,

T (L, euv) > T (L), (232)

where T (L) is the time of transmitting message L over euv, provided that euv is

interfered by exactly one primary user. In particular, T (L) is determined by the

primary user activities and can be evaluated as follows.

Suppose L is a random variable (r.v.) independent of the activities of primary

users {Bi}i≥1 and {Ii}i≥1. For each message, the SU divides it into packets with

constant size Lp > 0, which are then sent over the wireless channel. In each idle period

Ii, the SU attempts to transmit, and if Ii > Lp, the SU sends packets consecutively

until the remaining time of the idle period Ii is less than the packet size Lp. Otherwise,

if Ii < Lp, the SU will wait for the next idle period for transmission. An illustration

of this model is given in Figure 23. Now, the transmission time of the secondary user

is formally defined as follows.

Definition 17. During an idle period Ii, the transmission time Xi of the SU is defined

as

Xi := sup{nLp : nLp ≤ Ii}, (233)
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the total number of idle periods the SU occupies for transmitting a message of size L

is defined as

M := inf

{
m :

m∑
i=1

Xi ≥ L

}
, (234)

and the total delay T of the SU transmitting a message of size L is defined as

T (L) :=
M−1∑
i=1

{Ii +Bi}+

(
L−

M−1∑
i=1

Xi

)
(235)

Note that (L−
∑M−1

i=1 Xi) is the exact transmission time in the last idle period.

1 2 3 4 5 5

Idle Time (I) Busy Time (B)

PU

SU

Packet Lost

Packet Collided

Packet Transmitted

Figure 23: Dynamic spectrum access .

Assume the message size L is light-tailed distributed, we have

Lemma 18. If Bi ∈ RV(αb) with αb < 1, then E[T (L, euv)] = ∞. If Bi ∈ RV(αb)

with αb < 2, then V ar[T (L, euv)] = ∞.

The proof relies on the following Theorem

Theorem 22. [57] Assume that Bi ∈ RV(αb). If L ∈ LT, we have

lim
t→∞

log [P (T (L) > t)]

log t
= −αb. (236)

Proof of Lemma 18. Since T (L, euv) > T (L) surely, it follows that P (T (L, euv) >

t) > P (T (L) > t). By Theorem 22, we have

lim
t→∞

log [P (T (L, euv) > t)]

log t
> −αb. (237)

This, combining with the condition that αb < 1, indicates the tail coefficient of

T (L, euv) is less than 1, implying that E[T (L, euv)] > ∞
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From the above results, we can see that for each link in G(λs, r), if at least one of

the end points of this link is within the inference range of a primary user, the mean

transmission delay on this link is infinite. Based on this observation, we are ready to

prove Theorem 19.

Proof of Theorem 19. Consider a secondary user u in the giant component Cu of

G(λs, r). To prove that E[T (u, v)] = ∞ ∀v ∈ Cu with ||u − v|| > dc, it is sufficient

to prove that there exists a continuous interference region surrounding u such at all

paths starting from u and ending at any v with ||u−v|| < dc are disconnected by this

interference region. By Lemma 18, to disconnect a path between u and v, the possible

narrowest width of this interference region should be larger than the transmission

radius r of the secondary user. Thus, the basic idea of the proof is to show that

if condition λp > λ∗
p = λc

4(R2−r2/4)
is satisfied, such interference region exists almost

surely. Since the secondary network G(λs, r) is induced by a homogeneous Poisson

point process, all the nodes are probabilistically indistinguishable. We choose an

arbitrary node in G(λs, r) as the source node u.

We start by placing a square lattice S on R2, with the edge length dp. Consider

a sequence {Gi}i≥1 of annuli around the origin. Each annulus Gi is made up of four

rectangles

A+
i = [−dp2

i, dp2
i]× [dp2

i−1, dp2
i]

A−
i = [−dp2

i, dp2
i]× [−dp2

i, dp2
i−1]

B+
i = [dp2

i−1, dp2
i]× [−dp2

i, dp2
i]

B−
i = [−dp2

i,−dp2
i−1]× [−dp2

i, dp2
i] (238)

For each rectangle, we definite the crossing events as follows

Definition 18. A rectangle R = [x1, x2] × [y1, y2] being crossed from left to right

by a connected component in G(λs, r) means that there exists a sequence of nodes
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v1, v2, ..., vm ∈ G(λs, r) contained in R, with ||Xvi − Xvj || < 2
√

R2 − r2/4, i =

1, 2, ...,m − 1 and 0 < Xv1 − x1 < 2
√
R2 − r2/4, 0 < x2 − Xvm < 2

√
R2 − r2/4,

where Xv1 and Xvm are the x-coordinates of nodes v1 and vm, respectively. A rectan-

gle being crossed from top to bottom can be defined analogously

We define that A+
i (A

−
i ) is closed if A+

i (A
−
i ) is crossed from left to right by a

connected component in the primary network G(λp, R), as illusrated in Figure 24.

Similarly, we declare that B+
i (B

−
i ) is closed if B+

i (B
−
i ) is crossed from bottom to top

by a connected component in G(λp, R). The structure of the annulus is shown in

Figure 25.

Figure 24: Closed rectangle with the narrowest width equal to the transmission
radius r

By Definition 18, it is clear if A+
i is closed, the primary network G(λp, R) generates

a continuous interference region in A+
i with the possible narrowest width equal to the

transmission radius r of the secondary users. Let Ã+
i , Ã

−
i , B̃

+
i , and B̃−

i be the events

that A+
i , A−

i , B+
i , and B−

i are closed, respectively. According to RSW theorem and

and the scaling property of random geometric graphs [34], when λp >
λc

4(R2−r2/4)
, i.e.,

G(λp, R) is in the supercritical phase, we can choose dp large enough so that events

Ã+
i , Ã

−
i , B̃

+
i , and B̃−

i occur with the probability arbitrarily close to 1. This means

that for any 0 < δ < 1, there always exists d′p so that if dp ≥ d′p, Pr(Ã+
i ) = Pr(Ã−

i ) =

Pr(B̃+
i ) = Pr(B̃−

i ) ≥ δ

If events Ã+
i , Ã

−
i , B̃

+
i , and B̃−

i occur simultaneously, the annulusGi must contain a

continuous interference region generated by the primary users, and hence all the paths

starting from u are necessarily confined within the outer boundary of Gi. Denote the

latter event by G̃i. Since Ã
+
i , Ã

−
i , B̃

+
i , and B̃−

i are dependent [34], which means they

127



o

dp

2dp

Figure 25: The annulus G1(inside) and G2(outside). Each annulus has four closed
(crossed) rectangles

are positively correlated, utilizing Fortuin-Kasteleyn-Ginibre (FKG) inequality [34]

yields

Pr(G̃i) = Pr(Ã+
i ∩ Ã−

i ∩ B̃+
i ∩ B̃−

i )

≥ Pr(Ã+
i ) Pr(Ã

−
i ) Pr(B̃

+
i ) Pr(B̃

−
i ) ≥ δ4

Thus, we have
∑∞

i=1 Pr(G̃i) ≥
∑∞

i=1 δ
4 = ∞. Since the construction of the annuli

{Gi}i≥1 guarantees that events {Gi}i≥1 are independent, by the Borel-Cantelli lemma

[34], there exists j < ∞ so that G̃j occurs with the probability 1. Since the outer

boundary of annulus Gj is [−dp2
j, dp2

j] × [−dp2
j, dp2

j], this means that there exists

a finite value dc = dp2
j such that E[T (u, v)] = ∞ ∀v ∈ Cu with ||u− v|| > dc.

6.5 Mobility Improves Delay-bounded Connectivity

In this section, we prove Theorem 20 to show that mobility can help to achieve delay-

bounded latency. To prove Theorem 20, we transform a random geometric network

with mobile nodes Gm(λs, r) into a random static network with stationary nodes

G(λs). The node positions in the latter static network are given by the initial node

positions of the former mobile network. A link between a node u and v in the latter

static network exists if in the former mobile network, node u and v can exchange the

message within finite mean delay, without being assisted by other mobile nodes. Let

Tuv(L) define this message exchanging time between u and v without being assisted

by other mobile nodes. We formally define G(λs) as follows
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Definition 19. Given the initial locations X ′ = {X0
1 , X

0
2 , ..., X

0
n} of secondary users

u = 1, 2, ..., n at time 0 and the constrained i.i.d. mobility model with radius a. Let

G(λs) be a static random graph, in which secondary users are located at X ′ and a

links exists between u and v if E[Tuv(L)] < ∞.

To determine the existence of a link between u and v in G(λs), we first perform

the following mapping processes as illustrated in Figure 26 and then prove Lemma

19. We begin by placing a square lattice L with the edge length D on the plane

R2. All the vertices of L are located at (D × i,D × j), where (i, j) ∈ Z. We choose

the edge length D = a/
√
5, where a is the maximum radius a mobile secondary

user can reach. Any two squares adjacent to an edge form a mobility rectangle and

each mobility rectangle is evenly divided into multiple interference rectangle with

dimension 2(r/
√
5+R)×(2R+r/

√
5), where r is the transmission radius of secondary

user and R is the interference range of primary user. At the center of each interference

rectangle, we place a communication rectangle with dimension 2r/
√
5× r/

√
5.

interference

rectangle

communication

rectangle

mobility

rectangle

Figure 26: Lattice L′ and its dual L with four interference rectangles in one mobility
rectangle

Lemma 19. Given two secondary users u and v of Gm(λs, r). If the following two

conditions are met, i.e.,

1. The initial location u and v at time 0 are within the same mobility rectangle.

2. At least one of the interference rectangles in the corresponding mobility rectangle

exists no primary users.
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then there is link between u and v in G(λS).

Proof. To prove the above lemma, we show that the time Tuv(L) of exchanging a

message of size L between secondary users u and v without being assisted by other

mobile secondary users is of finite mean. Because the edge length of the lattice is

a/
√
5, this ensures that if two secondary users u and v are in the mobility region

at time 0, where the first condition of above Lemma is satisfied, there exists a posi-

tive probability that as time proceeds, u and v will be within the transmission range

of each other. Moreover, by our lattice construction, each mobility rectangle is di-

vided into multiple interference rectangles and each interference rectangle contains

a communication rectangle. Therefore, if u and v are in the mobility rectangle at

time 0, at each time slot, the probability that they can be simultaneously within a

particular communication rectangle i is p = 2r2

5πR2 because of the constrained i.i.d.

mobility model. This means the first time T1(v, u) that u and v are within this

communication rectangle follows geometric distribution with mean E[T1(v, u)] = p.

Assume that the interference rectangle containing communication rectangle i has no

primary users, which means the second condition of the lemma is satisfied. This

implies by the construction of the interference rectangle that there exists no primary

user interference in the communication rectangle i. Consequently, the mean delay,

E[Ttr(u, , v)] for transmitting one packet between u and v is less than E[T1(v, u)] = p,

i.e., E[Ttr(u, , v)] ≤ E[T1(v, u)]. This is due to the fact that the size of the communi-

cation rectangle is 2r/
√
5 × r/

√
5 and thus any two secondary users residing in the

communication rectangle is necessarily within the transmission range of each other.

Assume the mean size of the message L is finite, i.e., E[L] < ∞. This implies that

the mean transmission delay for message L, E[Tuv(L)] ≤ E[L]E[Ttr(u, v)] ≤ E[L]p.

This completes the proof.
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6.5.1 Critical Mobility Radius

Theorem 20 states that if the maximum mobility radius a is larger than the critical one

a∗, then the mobile secondary network Gm(λs, r) achieve delay-bounded connectivity.

This means that the message broadcasted by a secondary user u can be received

within the finite mean latency by an infinite number of secondary users residing at

any finite distance from u. Thus, to prove Theorem 20-1 is sufficient to prove following

two Lemmas

1. (Lemma 20)If the moving radius a of secondary users is larger than a threshold

a∗, then G(λs) is percolated

2. (Lemma 21)If G(λs) is percolated, then the minimum transmission latency

T (u, v) between any two secondary users u and v inside the giant connected

component of G(λs) is of finite mean

In the rest of this subsection, we state and prove these two lemmas, respectively.

Lemma 20. Given a secondary network G(λs, ), there exists a strictly positive value

a∗ < ∞, i.e.,

a∗ = argmin
a>0

((1− e−a2/5λs)2(1− (1− e−|RI |λp)N
I

) >
5

6
)

where |RI | = 2(r/
√
5 + R)(2R + r/

√
5) and NI = ⌊ (2/5)a2

RI ⌋ such that if a > a∗, then

G(λs) is percolated.

Before giving the proof of Lemma 20, we introduce several useful definitions.

Definition 20. A vertical edge e of L is said to be open if the following conditions

are satisfied:

1. At initial time t = 0, both squares adjacent to e contains at least one secondary

user;
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2. In the mobility region formed by the adjacent two squares, there exists at least

one of the interference rectangles, which does not contain any primary users.

Define similarly the open horizontal edge of L by rotating the rectangle Re by

90 degree. Next, we construct the dual lattice of L, which is denoted by L′. L′ is

obtained from L in the following way. A vertex is placed in the center of each square

of L, and two such neighboring vertices are joined by a straight line segment. This

line segment becomes an edge of L′ . As L is a square lattice, the dual lattice L′ is

the same lattice shifted by (D/2, D/2).

Definition 21. An edge of L′. is said to be open if and only if its corresponding edge

of L is open.

Definition 22. A path (in L orL′) is said to be open if and only if all its edges are

open; a path (in L or L′) is said to be close if and only if all its edges are close.

Proof of Lemma 20. The basic idea of the proof for Lemma 20 is to translate the

presence of continuum percolation on G(λs) into the presence of bond percolation

on the lattice = L′. More specifically, we first show that the secondary network

G(λs) will have an infinite connected component on the continuous plane R2 if bond

percolation occurs on L′, i.e.,if there exists an infinite open path on L′.

Let E1 and E2 be the events when the conditions (i) and (ii) in Definition 20

are satisfied, respectively. Let Ce denote the event that an edge e is closed. The

probability that Ce occurs is upper bounded by

Pr(Ce) = 1− Pr(E1 ∩ E2)
a
=1− Pr(E1) Pr(E2)

= 1− (1− e−D2λs)2(1− (1− e−|RI |λp)N
I

)

where D = a/
√
5, |RI | = 2(r/

√
5 + R)(2R + r/

√
5) is the area of the interference

region RI , and NI = ⌊2D2

RI ⌋ is the number of interference rectangles in the mobility
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region. Equality a in (239) comes from the independence of the locations of primary

and secondary users.

Now, let us consider a path Pn = {ei}ni=1 of length n in L. Because the states (i.e.,

open or closed) of any set of non-adjacent edges are independent, there exist at least

m ≥ n/2 edges in Pn, e.g., {ej}mj=1 ⊆ {ei}ni=1, such that their states are independent

from each other. Let Xei denote the event that ei is closed. Then, the probability

that the path Pn is closed is upper bounded by

Pr(closed Pn) = Pr(
n∩

i=1

Xei) ≤ Pr(
m∩
i=1

Xei) ≤ q
n
2 , (239)

where q = Pr(Ce) as given in (239).

By the duality between L and L′, if an open path starting from a vertex (e.g.,

the origin) in L′ is finite, the origin is necessarily surrounded by a closed circuit (a

closed path with the same starting and ending vertex) in the dual lattice L. Hence,

by letting the latter event be OL, the probability that there exists an infinite open

path starting from the origin is 1− Pr(OL). Furthermore, from (239), we have

Pr(OL) =
∞∑
n=2

σ(n) Pr(closed P2n) ≤
∞∑
n=2

σ(n)qn, (240)

where σ(n) is the number of closed circuits of the length 2n surrounding the origin.

It is easy to show that σ(n) is upper bounded by

σ(n) ≤ (n− 1)32(n−1). (241)

Hence, we have

Pr(OL) =
∞∑
n=2

(n− 1)32(n−1)qn =
9q2

(1− 9q)2
. (242)

Therefore, from (242) and (239), if q = Pr(Ce) < 1/6, or a > a∗, where

a∗ = argmin
a>0

((1− e−a2/5λs)2(1− (1− e−|RI |λp)N
I

) >
5

6
)
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then Pr(OL) converges to a number less than one. As a consequence, the probability

that there exists an infinite open path starting from the origin in L′ is positive.

According to Kolmogorovs zero-one law, this implies that an infinite path exists in

L′with probability one.

We now consider an infinite open path P∞ = {e′i}∞i=1 in L′. Along each edge e′i,

there exists two adjacent squares in the dual lattice L. Therefore, along P∞, there

exists a sequence of squares {Si}∞i=1 in L such that any two consecutive squares,

denoted by Si and Si+1, are adjacent. By Definition 20 and 21, the region comprising

Si and Si+1 contains at least two mutually connected SUs that belong to G(λs). Thus,

the sequence of squares {Si}∞i=1 forms an infinite connected component inG(λs), which

indicates that G(λs) is percolated

Now, we are ready to prove the first part of Theorem 20. We first introduce some

useful notations. We denote by C∞ the infinite connected component in G(λs). For

each coordinate (i, 0) on the square lattice L with i ∈ Z, denote the location of the

nearest secondary users in C∞ by X̃i, i.e., X̃i = argminXj∈C∞||Xj| − (i, 0)||. Let

Tm,n = T (X̃m, X̃n).

Now, we assume a > a∗ which means G(λs) is percolated. Then, to prove Theorem

20-1 is sufficient to prove following Lemma

Lemma 21. Given two SUs, X̃0 and X̃n within the giant connected component

in G(λs, r). If the mutual distance d0,n = ||X̃0 − X̃n|| < ∞, then E(|T0,n|) =

E(|T (X̃0, X̃n)|) < ∞

Proof. To compute the upper bound of E(|T0,n|), we consider the shortest path (in

links) l0,n from X̃0 to X̃n. Denote |l0,n| the number of hops or links on such a path,

and Ti the delay on each hop i. Since the smallest delay T0,n cannot be greater

than the delay on any particular path, E(|T0,n|) is upper bounded by E(|T0,n|) ≤

E(
∑|l0,n|

i=1 Ti) = E(Ti)E(|l0,n|).
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By the construction of G(λs) and Lemma 19, E(Ti) < ∞. Therefore, to show

E(|T0,n|) < ∞, is sufficient to prove E(|l0,n|) < ∞. Let vX̃0
denote the vertex of L′,

which is closest to X̃0 and Let vX̃n
denote the vertex of L′, which is closest to X̃n. By

our construction of G(λs), the shortest path l0,n between X̃0 and X̃n is the open path

on L′ consisting of the smallest number of edges. To evaluate |l0,n|, we construct a

new square lattice on the top of square lattice L′ (shown in fig 26), This new square

lattice has the edge length d0,n = nLD, where LD the edge length of L′. Then, a

sequence annuli {Gi(d0,n)}i≥1 around the origin is constructed in the same way as

illustrated in Figure 25. More specifically, each annulus Gi(d0,n) is made up of four

rectangles A+
i (d0,n),A

−
i (d0,n), B

+
i (d0,n), and B−

i (d0,n), according to equation (238), in

which we substitute d0,n/2 for dp. We define the crossing events for the rectangles as

follows.

Definition 23. A rectangle [x1, x2]× [y1, y2] is crossed from left to right if [x1, x2]×

[y1, y2] contains an open path on the square lattice L′ that joins the left and right

borders of [x1, x2] × [y1, y2]. A rectangle [x1, x2] × [y1, y2] being crossed from top to

bottom can be defined analogously.

Let Ã+
i (d0,n),Ã

−
i (d0,n), B̃

+
i (d0,n), and B̃−

i (d0,n) be the event that A
+
i (d0,n),A

−
i (d0,n),

B+
i (d0,n), and B−

i (d0,n) are open, respectively. By RSW theorem for independent

bound percolation [20], if the states of edges of L′ are independent and the open

probability of the edge is larger than 1/2, for any 0 < δ < 1, there always exists

i < ∞ such that P (Ã+
i (d0,n)) > δ. Although the adjacent edges of L′ are dependent,

by the definition 20 and 21, the open states of adjacent edges in L′ are increasing

events. Moreover, by the proof of Lemma 20, the open probability of the edge is larger

than 5/6, provided that a > a∗. This implies that if a > a∗, P (Ã+
i (d0,n)) > δ still

holds. Denote G̃i(d0,n) the event that all the four rectangles of an annulus Gi(d0,n)

are open. Since Ã+
i (d0,n),Ã

−
i (d0,n), B̃

+
i (d0,n) and B̃−

i (d0,n) are increasing events, by

the FKG inequality [34], we have Pr(G̃i(d0,n)) = Pr(Ã+
i (d0,n)∩ Ã−

i (d0,n)∩ B̃+
i (d0,n)∩
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B̃−
i (d0,n)) ≥ δ4

If all the four rectangles of an annulus Gi(d0,n) are open, i.e., G̃i(d0,n) occurs, then

the annulus Gi(d0,n) contains an open circuit. Consequentially, the shortest path L0,n

is necessarily included in the square [−d0,n2
i, d0,n2

i] × [−d0,n2
i, d0,n2

i]. Thus, the

number of hops on l0, n, e.g., |l0,n|, can be upper bounded by a certain value. Since

l0,n is included in a square of the size of 4id20,n, |l0,n| is upper bounded by 4in2 + 2in.

Therefore, we have

Pr(|l0,n| > 4in2 + 2in) < Pr(
i∩

j=1

G̃j(d0,n)) < (1− δ4)i

E(|L0,n|) can be upper bounded by

E(|l0,n|) =
N−1∑
k=0

Pr(|l0,n|) > k +
∞∑

k=N

Pr(|l0,n|) > k

≤ 4N−1n2 + 2N−1n+
∞∑

k=N

4kn2 + 2kn

(1− δ4)−k
< ∞

where N is the minimum value of the annulus index i such that Pr(Ã+
i (d0,n) > δ >

(3
4
)1/4. This completes the proof.

6.5.2 First-passage Latency

Next, we prove the Theorem 21 regarding the linear scaling property of the first-

passage latency Tp(u, v) with the Euclidean distance between u and v as the distance

approaches ∞.

The proof of Theorem 20-2 relies on the following lemma.

Lemma 22.

lim
n→∞

(
T0,n

n
) = ρ (243)

with probability one

where ρ = limn→∞
E(T0,n)

n
= infn≥1

E(T0,n)

n

The main tools to prove Lemma 22 is Liggetts subadditive ergodic theorem [30],

which states as follows.
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Theorem 23. (subadditive ergodic theorem) Let {Tm,n} be a collection of random

variables indexed by integers satisfying 0 ≤ m < n. Suppose {Tm,n} has following

properties: (i) T0,n ≤ T0,m + Tm,n. (ii) The distribution of {Tm,m+k : k ≥ 1} does

not depend on m. (iii) {Tnk,(n+1)k : n ≥ 0} is a stationary sequence for each k ≥ 1.

(iv) E(|T0,n|) < ∞ for each n. Then, (a) η = limn→∞
E(T0,n)

n
= infn≥1

E(T0,n)

n
. (b)

T = limn→∞
T0,n

n
with probability one and E(T ) = η. Furthermore, if (v) for k ≥ 1,

{Tnk,(n+1)k : n ≥ 0} are ergodic, then (c) T = η.

Evidently, if all above conditions are satisfied, Lemma 22 is proved. It is easy

to check that condition (i) is satisfied because T0,n is defined as the smallest trans-

mission latency between the SUs located at X̃m and X̃n, and it is easy to see T0,n

cannot exceed T0,m + Tm,n, otherwise T0,n is not the smallest transmission latency .

Moreover, the conditions (ii) and (iii) are clearly fulfilled because of the stationarity

of the homogeneous Poisson point process. Moreover, condition (iv) is met because of

Lemma 21. To show that condition (v) of Theorem 23 is satisfied, As in [14], we prove

{Tnk,(n+1)k : n ≥ 0} is asymptotically independent, which is a stronger statement than

{Tnk,(n+1)k : n ≥ 0} is ergodic.

Lemma 23. The sequence Tnk,(n+1)k : n ≥ 0 is strong mixing.

Proof. Similar to the proof of Lemma 21, we place two annuli centered at (nk, 0)

and ((n +m)k, 0), respectively. Since G(λs) is percolated, by Borel-Cantelli lemma,

there always exists an annulus containing an open circuit such that the path with

the shortest latency from X̃nk to X̃(n+1)k is circumscribed within a square S1 with

finite edge length 2i+1d and the corresponding path from X̃(n+m)k to X̃(n+m+1)k is

circumscribed within a square S2 with finite edge length 2j+1d. As m goes to infinity,

the two squares are not overlapping, which means the path from X̃nk to X̃(n+1)k does

not share any links with the path from X̃(n+m)k to X̃(n+m+1)k. Thus, Tnk,(n+1)k and
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T(n+m)k,(n+m+1)k are asymptotically independent, i.e.,

lim
m→∞

Pr(Tnk,(n+1)k < t ∩ T(n+m)k,(n+m+1)k < t)

= Pr(Tnk,(n+1)k < t) ∩ Pr(T(n+m)k,(n+m+1)k < t)

This completes the proof.

Proof of Theorem 2-2. Without loss of generality, take a straight line passing through

Xu and Xv as the x-axis. Consider Xu as the origin. This means Xu = X̃0. We

denote by n the integer closest to the x-axis coordinate of Xv, which implies that

||Xv − (n, 0)|| < 1
2
and ||Xu −Xv|| < n+ 1

2

Let dn be the Euclidean distance between X̃n and (n, 0), i.e., dn = ||X̃n − (n, 0)||.

By triangle inequality, we have ||Xv−X̃n|| < ||X̃n−(n, 0)||+ ||Xv−(n, 0)|| < dn+
1
2
<

∞. As a result, T (Xu, Xv) > T0,n − T (Xv, X̃n), and thus

T (Xu, Xv) = T0,n −∆t, (244)

where ∆t < T (Xv, X̃n) < ∞, which implies

lim
||Xu−Xv ||→∞

T (Xu, Xv)

||Xu −Xv||
= lim

n→∞

T0,n

n

Thus, from Lemma 5, we obtain

Pr( lim
||Xu−Xv ||→∞

T (Xu, Xv)

||Xu −Xv||
= ρ) = 1 (245)

Now, we derive the upper and lower bounds of ρ. From Proposition 2, ρ is upper

bounded by

ρ = inf
n≥1

E(T0,n)

n
≤ E(T0,1) < ∞ (246)

To prove the upper bound ρ > 0, let d0 = ||X̃0 − (n, 0)|| and dn = ||X̃n − (n, 0)|| It

is clear that d0 < ∞ and dn < ∞. By triangle inequality, we have ||X̃n − X̃0|| >

n− d0 − dn. Thus, the number of hops from X̃n to X̃0 is at least
n−d0−dn

r
. Therefore,

ρ is upper bounded by

ρ = inf
n≥1

E(T0,n)

n
≥ lim

n→∞

E(Ti)(n− d0 − dn)

rn
=

E(Ti)

r
> 0
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6.6 Simulation Results

In this section, we evaluate the impact of node mobility on delay-bounded connec-

tivity through simulations. Consider a secondary network coexisting with a primary

network, where primary user density λp = 0.1 and secondary user density λs = 1.6.

All primary users have a transmission range R = 1.2, while secondary users have a

transmission range r = 1.

We first study the connectivity of a stationary secondary network with all sec-

ondary users being static. In this case, since the SU density λs = 1.6 is larger than

the critical one 1.43 < λc < 1.44, the secondary network is percolated or connected

if the primary network does not exist. As shown in Figure 27, the largest connected

component, represented by red dots, contains the majority of secondary users in the

network.
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Figure 27: Largest connected component (in red dots) of a standalone secondary
network.

However, as indicated by Theorem 19, because of the HT interference from the

primary network, there exists a critical density λ∗
p of primary network, above which

delay-bounded connectivity is not achievable. According to the network settings, we
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have λ∗
p = 0.3025. In this case, as shown in Figure 28, the largest connected com-

ponent, represented by red dots, only contains a very small portion of the secondary

users, which implies that the whole network is partitioned by the HT interference

into small components which are disconnected from each other. Moreover, as implied

by Theorem 19, the critical density λ∗
p of primary network does not depend on the

density of secondary network, which implies that increasing the density of secondary

users cannot improve the connectivity of the secondary network. This can be observed

in Figure 29, where the secondary network is still disconnected even if the secondary

network in Figure 28 has much higher density λs = 5 than the secondary network in

Figure 28.
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Figure 28: Largest connected component (in red dots) of a secondary network (λs =
1.6) coexisting with a primary network (λp = 0.1).

Next, we investigate the impact of node mobility on the secondary network con-

nectivity. To combat the impact of HT interference of PUs, the spatial diversity of the

spectrum can be exploited by allowing mobile secondary users to exchange messages

when they opportunistically move into the same white space, the region without PU

interference, and are closely enough for data communications. As indicated in Theo-

rem 20, there exists a critical mobility radius a∗ above which the secondary network
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Figure 29: Largest connected component (in red dots) of a secondary network (λs =
5) coexisting with a primary network (λp = 0.1).

can achieve delay-bounded connectivity surely. Based on the network settings at the

beginning of this section, we have a∗ = 12.8. To validate the existence of a∗, we

let all secondary users have the maximum mobility radius equal to a∗ = 12.8 and

evaluate the network connectivity in Figure 31 accordingly. It is shown that with the

help of node mobility, the secondary network can achieve delay-bounded connectivity

so that almost every secondary user resides in a giant connected component. In the

contrary, as shown in Figure 30, without node mobility, the same secondary network

is disconnected in the sense that the largest connected component only contains a

small portion of secondary users because of the HT interference region of PUs, which

is denoted by black discs.

We now evaluate the end-to-end average latency in the secondary network with

mobile users. More specifically, we assume that all secondary users have their maxi-

mummobility radius larger than the critical one a∗ so that delay-bounded connectivity

is guaranteed with the rise of a giant connected component in the network. Then,

we randomly select a secondary user from this giant component and evaluate the

paths with the smallest average latency between this secondary user and every other
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Figure 30: Largest connected component (in red dots) of a secondary network with
static users.
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Figure 31: Largest connected component (in red dots) of a secondary network with
mobile users.
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secondary user it can connect to. As indicated by Theorem 21, the latency along

those paths, formally defined as the first passage latency, scales linearly as the initial

distance between the sending and receiving parties become large. Such asymptotic

linear relationship can be seen in Figure 32, where the ratio between the first passage

latency and the initial node distance approaches a constant as the distance increases.
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Figure 32: First passage latency of a secondary network with mobile users.
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CHAPTER VII

CONCLUSION

7.1 Research Contributions

Recent empirical evidence establishes that the key attributes of wireless networks

have exhibited heavy-tailed behavior, which can lead to the extremely bursty nature

in Internet and multimedia traffic, the highly variable channel condition, and the

irregular mobility pattern of network users. Such heavy-tailed nature largely departs

from conventional light-tailed assumptions, and requires the revision of some well-

established design principles in communication and network systems. To this end, we

first develop novel traffic models that reveal the new origins of heavy-tailed traffic.

Then, we analyze the theoretical performance limits in terms of network latency, sta-

bility, and connectivity under heavy-tailed network environment. Finally, we propose

optimal algorithms spanning different protocol layers to approach these limits.

In Chapter 3, a novel traffic model is proposed, which captures the inherent re-

lationship between heavy-tailed traffic and network dynamics. Then, the statistical

attributes of the proposed model are analyzed, which establish the conditions un-

der which user mobility associated with spatial correlation can lead to heavy-tailed

traffic. More specifically, it is shown that a high mobility variance and small spatial

correlation can give rise to pseudo long range dependent (LRD) traffic, whose auto-

correlation function decays slowly and hyperbolically up to a certain cutoff time lag.

Secondly, due to the ad-hoc nature of WSNs, certain relay nodes may have several

routes passing through them, necessitating local traffic aggregations. At these relay

nodes, our model predicts that the aggregated traffic also exhibits the bursty behav-

ior characterized by a scaled power-law decayed autocovariance function. According
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to these findings, a novel traffic shaping protocol using movement coordination is

proposed to facilitate effective and efficient resource provisioning strategy. Finally,

simulation results reveal a close agreement between the traffic pattern predicted by

our theoretical model and the simulated transmissions from multiple independent

sources, under specific bounds of the observation intervals

In Chapter 4, the asymptotic delay distribution of wireless users is analyzed under

different traffic patterns and spectrum conditions, which reveals the critical condi-

tions under which wireless users can experience heavy-tailed delay with significantly

degraded QoS performance. More specifically, it is shown that the emerging dynamic

spectrum access scheme induces only light-tailed delay if both the busy time of wire-

less channels and the message size of network users are light-tailed. On the contrary,

if either the busy time or the message size is heavy tailed, then the users’ transmission

delay is heavy tailed. For this latter case, it is proven that if one of either the busy

time or the message size is light-tailed and the other is regularly varying with index α,

the transmission delay is regularly varying with the same index. As a consequence,

the delay has an infinite mean provided α < 1 and an infinite variance provided

α < 2. Furthermore, if both the busy time and the message size are regularly varying

with different indices, then the delay tail distribution is as heavy as the one with the

smaller index. Moreover, the impact of spectrum mobility and multi-radio diversity

on the delay performance of network users is studied. It is shown that both spectrum

mobility and dynamic multi-radio diversity can greatly mitigate the heavy tailed de-

lay by maximizing the orders of its finite moments, while by doing the opposite, static

multi-radio diversity can aggravate the heavy-tailed delay.

Based on the delay analysis, in Chapter 5, a new network stability criterion,

namely moment stability, is introduced to better characterize the stability perfor-

mance in the presence of heavy-tailed traffic. Then, an asymptotic queueing analy-

sis is performed to reveal the critical conditions under which there exists a feasible
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scheduling policy to achieve moment stability. More specifically, it is shown that mo-

ment stability is only achievable if the heavy-tailed channel busy time has a tail index

larger than three. Utilizing this analysis, a maximum-weight-β scheduling algorithm

is proposed, which associates each queue with a different parameter β and makes the

scheduling decision based on the queue lengths raised to the β-th power. It is proven

that the maximum-weight-β scheduling algorithm is throughput-optimal in the sense

that it can maximize the network throughput, while maintaining moment stability. ,

Besides stability, network connectivity also needs to be revisited under heavy-

tailed environment. Towards this end, in Chapter 6, a new connectivity criterion,

namely delay-bounded connectivity, is introduced, which simultaneously ensures the

existence of routing paths and the finiteness of the average delay and jitter along these

paths. Then, the sufficient conditions on the existence of delay-bounded connectivity

are derived. Specifically, it is proven that if the busy time of primary users is heavy-

tail distributed, there always exists a critical density λp such that if the density

of primary users is larger than λp, the secondary networks can not achieve delay-

bounded connectivity. To encounter this, the mobility of secondary users is utilized

to exploit the spatial diversity of the spectrum availability. In particular, as an

important design parameter for all mobility-assisted data forwarding schemes, the

critical mobility radius is derived, which is a critical threshold on the maximum radius

the network user can reach, above which delay-bounded connectivity is guaranteed. In

this case, the end-to-end latency between mobile users is proven to be asymptotically

linear in the Euclidean distance between the transmitter and receiver. .

7.2 Future Work

In the future, we intend to broadly revisit wireless networking operations under heavy-

tailed environment. One of such operations is multi-hop routing. In particular, we

will investigate the effectiveness of the celebrated routing protocols under heavy-tailed
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traffic and radio spectrum. For example, it is interesting to investigate whether the

widely applied throughout-optimal routing schemes, such as backpressure routing

[39], can still maintain their optimality in the presence of heavy tails. Moreover, to

avoid network congestion, congestion control solutions need to be developed under the

hybrid network traffic, consisting of both inelastic traffic and elastic traffic. Inelastic

traffic is generally real-time delay-sensitive traffic (e.g., video and audio traffic) whose

data rate can be effectively controlled. In the contrary, elastic traffic (e.g., emails, http

traffic, file transfers) is delay-insensitive, whose data rate can be controlled. Because

of the strict QoS requirement, inelastic traffic normally has higher priority over elastic

traffic. This means the residue bandwidth allowed for elastic traffic to adjust its data

rate is fluctuated by the data rate of inelastic traffic. This fact imposes great challenge

on the design of effective congestion control solutions because inelastic traffic (e.g.,

video and audio traffic) normally exhibits heavy-tailed nature with extremely high

variability. After investigating the impact of heavy-tailed environment on routing

and congestion control, we will develop a light-weight cross-layer framework that

incorporates routing and congestion control into our proposed scheduling algorithms,

with an objective to maximize network utility in the presence of heavy tails, while

incurring limited message exchange and dependency across network layers.

Besides developing effective network control solutions under the generic settings

of wireless networks, we will develop effective network management schemes for the

emerging Internet of Things based on the theoretical foundations established in this

dissertation. Largely departing from the original definition of Internet of Things cen-

tered at networked RFIDs, the wireless interconnection of pervasively deployed mul-

timedia devices, ranging from low-cost multimedia sensor nodes to full-fledged smart

devices, with existing communication networks and ultimately the Internet defines a

truly Cyber-Physical system, which can be referred to as the Internet of Multimedia

Things (IoMT). As a major bottleneck of IoMT, the extremely high heterogeneity
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in data traffic types, hardware capacities, communication requirements, and operat-

ing physical environments necessitates the development of a coherent context-aware

networking architecture, which enables devices to intelligently, proactively, and collab-

oratively adjust their operations according to the heterogeneous context information.

To this end, we will continue my current research in the following directions: (I) the

impact of mixed heavy-tailed content (e.g., video and internet traffic) and light-tailed

content (e.g., temperature and humidity data) on network management; (II) the im-

pact of bursty spectrum on pricing modeling and operator spectrum/revenue sharing

schemes. Moreover, I will incorporate two new concepts, i.e., device awareness and

social awareness, into the context-aware networking framework. Both concepts can

improve the efficient data dissemination by utilizing the heterogeneity in devices, e.g.,

static low-cost sensor nodes and mobile smart phones, combined with the social be-

havior patterns of mobile users, including social contacts, social interests, and social

relations.
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