5,152 research outputs found

    Fundamental Limits of Rate-Constrained Multi-User Channels and Random Wireless Networks

    Get PDF
    This thesis contributes toward understanding fundamental limits of multi-user fading channels and random wireless networks. Specifically, considering different samples of channel gains corresponding to different users/nodes in a multi-user wireless system, the maximum number of channel gains supporting a minimum rate is asymptotically obtained. First, the user capacity of fading multi-user channels with minimum rates is analyzed. Three commonly used fading models, namely, Rayleigh, Rician and Nakagami are considered. For broadcast channels, a power allocation scheme is proposed to maximize the number of active receivers, for each of which, a minimum rate Rmin>0 can be achieved. Under the assumption of independent Rayleigh fading channels for different receivers, as the total number of receivers n goes to infinity, the maximum number of active receivers is shown to be arbitrarily close to ln(P.ln(n))/Rmin with probability approaching one, where P is the total transmit power. The results obtained for Rayleigh fading are extended to the cases of Rician and Nakagami fading models. Under the assumption of independent Rician fading channels for different receivers, as the total number of receivers n goes to infinity, the maximum number of active receivers is shown to be equal to ln(2P.ln(n))/Rmin with probability approaching one. For broadcast channels with Nakagami fading, the maximum number of active receivers is shown to be equal to ln(ω/μ.P.ln(n))/Rmin with probability approaching one, where ω and μ are the Nakagami distribution parameters. A by-product of the results is to also provide a power allocation strategy that maximizes the total throughput subject to the rate constraints. In multiple-access channels, the maximum number of simultaneous active transmitters (i.e. user capacity) is obtained in the many user case in which a minimum rate must be maintained for all active users. The results are presented in the form of scaling laws as the number of transmitters increases. It is shown that for all three fading distributions, the user capacity scales double logarithmically in the number of users and differs only by constants depending on the distributions. We also show that a scheduling policy that maximizes the number of simultaneous active transmitters can be implemented in a distributed fashion. Second, the maximum number of active links supporting a minimum rate is asymptotically obtained in a wireless network with an arbitrary topology. It is assumed that each source-destination pair communicates through a fading channel and destinations receive interference from all other active sources. Two scenarios are considered: 1) Small networks with multi-path fading, 2) Large Random networks with multi-path fading and path loss. In the first case, under the assumption of independent Rayleigh fading channels for different source-destination pairs, it is shown that the optimal number of active links is of the order log(N) with probability approaching one as the total number of nodes, N, tends to infinity. The achievable total throughput also scales logarithmically with the total number of links/nodes in the network. In the second case, a two-dimensional large wireless network is considered and it is assumed that nodes are Poisson distributed with a finite intensity. Under the assumption of independent multi-path fading for different source-destination pairs, it is shown that the optimal number of active links is of the order N with probability approaching one. As a result, the achievable per-node throughput obtained by multi-hop routing scales with Θ(1/√N)

    Effective Capacity in Cognitive Radio Broadcast Channels

    Full text link
    In this paper, we investigate effective capacity by modeling a cognitive radio broadcast channel with one secondary transmitter (ST) and two secondary receivers (SRs) under quality-of-service constraints and interference power limitations. We initially describe three different cooperative channel sensing strategies with different hard-decision combining algorithms at the ST, namely OR, Majority, and AND rules. Since the channel sensing occurs with possible errors, we consider a combined interference power constraint by which the transmission power of the secondary users (SUs) is bounded when the channel is sensed as both busy and idle. Furthermore, regarding the channel sensing decision and its correctness, there exist possibly four different transmission scenarios. We provide the instantaneous ergodic capacities of the channel between the ST and each SR in all of these scenarios. Granting that transmission outage arises when the instantaneous transmission rate is greater than the instantaneous ergodic capacity, we establish two different transmission rate policies for the SUs when the channel is sensed as idle. One of these policies features a greedy approach disregarding a possible transmission outage, and the other favors a precautious manner to prevent this outage. Subsequently, we determine the effective capacity region of this channel model, and we attain the power allocation policies that maximize this region. Finally, we present the numerical results. We first show the superiority of Majority rule when the channel sensing results are good. Then, we illustrate that a greedy transmission rate approach is more beneficial for the SUs under strict interference power constraints, whereas sending with lower rates will be more advantageous under loose interference constraints.Comment: Submitted and Accepted to IEEE Globecom 201

    Distortion Minimization in Gaussian Layered Broadcast Coding with Successive Refinement

    Full text link
    A transmitter without channel state information (CSI) wishes to send a delay-limited Gaussian source over a slowly fading channel. The source is coded in superimposed layers, with each layer successively refining the description in the previous one. The receiver decodes the layers that are supported by the channel realization and reconstructs the source up to a distortion. The expected distortion is minimized by optimally allocating the transmit power among the source layers. For two source layers, the allocation is optimal when power is first assigned to the higher layer up to a power ceiling that depends only on the channel fading distribution; all remaining power, if any, is allocated to the lower layer. For convex distortion cost functions with convex constraints, the minimization is formulated as a convex optimization problem. In the limit of a continuum of infinite layers, the minimum expected distortion is given by the solution to a set of linear differential equations in terms of the density of the fading distribution. As the bandwidth ratio b (channel uses per source symbol) tends to zero, the power distribution that minimizes expected distortion converges to the one that maximizes expected capacity. While expected distortion can be improved by acquiring CSI at the transmitter (CSIT) or by increasing diversity from the realization of independent fading paths, at high SNR the performance benefit from diversity exceeds that from CSIT, especially when b is large.Comment: Accepted for publication in IEEE Transactions on Information Theor

    Elements of Cellular Blind Interference Alignment --- Aligned Frequency Reuse, Wireless Index Coding and Interference Diversity

    Full text link
    We explore degrees of freedom (DoF) characterizations of partially connected wireless networks, especially cellular networks, with no channel state information at the transmitters. Specifically, we introduce three fundamental elements --- aligned frequency reuse, wireless index coding and interference diversity --- through a series of examples, focusing first on infinite regular arrays, then on finite clusters with arbitrary connectivity and message sets, and finally on heterogeneous settings with asymmetric multiple antenna configurations. Aligned frequency reuse refers to the optimality of orthogonal resource allocations in many cases, but according to unconventional reuse patterns that are guided by interference alignment principles. Wireless index coding highlights both the intimate connection between the index coding problem and cellular blind interference alignment, as well as the added complexity inherent to wireless settings. Interference diversity refers to the observation that in a wireless network each receiver experiences a different set of interferers, and depending on the actions of its own set of interferers, the interference-free signal space at each receiver fluctuates differently from other receivers, creating opportunities for robust applications of blind interference alignment principles

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Minimum Expected Distortion in Gaussian Layered Broadcast Coding with Successive Refinement

    Full text link
    A transmitter without channel state information (CSI) wishes to send a delay-limited Gaussian source over a slowly fading channel. The source is coded in superimposed layers, with each layer successively refining the description in the previous one. The receiver decodes the layers that are supported by the channel realization and reconstructs the source up to a distortion. In the limit of a continuum of infinite layers, the optimal power distribution that minimizes the expected distortion is given by the solution to a set of linear differential equations in terms of the density of the fading distribution. In the optimal power distribution, as SNR increases, the allocation over the higher layers remains unchanged; rather the extra power is allocated towards the lower layers. On the other hand, as the bandwidth ratio b (channel uses per source symbol) tends to zero, the power distribution that minimizes expected distortion converges to the power distribution that maximizes expected capacity. While expected distortion can be improved by acquiring CSI at the transmitter (CSIT) or by increasing diversity from the realization of independent fading paths, at high SNR the performance benefit from diversity exceeds that from CSIT, especially when b is large.Comment: To appear in the proceedings of the 2007 IEEE International Symposium on Information Theory, Nice, France, June 24-29, 200
    • …
    corecore