13 research outputs found

    Neural Class-Specific Regression for face verification

    Get PDF
    Face verification is a problem approached in the literature mainly using nonlinear class-specific subspace learning techniques. While it has been shown that kernel-based Class-Specific Discriminant Analysis is able to provide excellent performance in small- and medium-scale face verification problems, its application in today's large-scale problems is difficult due to its training space and computational requirements. In this paper, generalizing our previous work on kernel-based class-specific discriminant analysis, we show that class-specific subspace learning can be cast as a regression problem. This allows us to derive linear, (reduced) kernel and neural network-based class-specific discriminant analysis methods using efficient batch and/or iterative training schemes, suited for large-scale learning problems. We test the performance of these methods in two datasets describing medium- and large-scale face verification problems.Comment: 9 pages, 4 figure

    Multimodal Subspace Support Vector Data Description

    Get PDF
    In this paper, we propose a novel method for projecting data from multiple modalities to a new subspace optimized for one-class classification. The proposed method iteratively transforms the data from the original feature space of each modality to a new common feature space along with finding a joint compact description of data coming from all the modalities. For data in each modality, we define a separate transformation to map the data from the corresponding feature space to the new optimized subspace by exploiting the available information from the class of interest only. We also propose different regularization strategies for the proposed method and provide both linear and non-linear formulations. The proposed Multimodal Subspace Support Vector Data Description outperforms all the competing methods using data from a single modality or fusing data from all modalities in four out of five datasets.Comment: 26 pages manuscript (6 tables, 2 figures), 24 pages supplementary material (27 tables, 10 figures). The manuscript and supplementary material are combined as a single .pdf (50 pages) fil

    Graph Embedding with Data Uncertainty

    Full text link
    spectral-based subspace learning is a common data preprocessing step in many machine learning pipelines. The main aim is to learn a meaningful low dimensional embedding of the data. However, most subspace learning methods do not take into consideration possible measurement inaccuracies or artifacts that can lead to data with high uncertainty. Thus, learning directly from raw data can be misleading and can negatively impact the accuracy. In this paper, we propose to model artifacts in training data using probability distributions; each data point is represented by a Gaussian distribution centered at the original data point and having a variance modeling its uncertainty. We reformulate the Graph Embedding framework to make it suitable for learning from distributions and we study as special cases the Linear Discriminant Analysis and the Marginal Fisher Analysis techniques. Furthermore, we propose two schemes for modeling data uncertainty based on pair-wise distances in an unsupervised and a supervised contexts.Comment: 20 pages, 4 figure
    corecore