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Abstract: Face verification is a problem approached in the literature mainly using nonlinear class-specific subspace learning tech-
niques. While it has been shown that kernel-based Class-Specific Discriminant Analysis is able to provide excellent performance
in small- and medium-scale face verification problems, its application in today’s large-scale problems is difficult due to its training
space and computational requirements. In this paper, generalizing our previous work on kernel-based class-specific discriminant
analysis, we show that class-specific subspace learning can be cast as a regression problem. This allows us to derive linear,
(reduced) kernel and neural network-based class-specific discriminant analysis methods using efficient batch and/or iterative
training schemes, suited for large-scale learning problems. We test the performance of these methods in two datasets describing
medium- and large-scale face verification problems.

1 Introduction

Facial image analysis received intensive research attention during
the last two decades, due to its importance in a wide variety of
applications, ranging from surveillance, affective computing, enter-
tainment and assisted living [1–3]. Depending on the application
scenario, different facial image analysis problems are considered,
the most widely used ones being those of face recognition and face
verification. On the one hand, face recognition is a multi-class prob-
lem, where the objective is to categorize a new (unknown) facial
image in one of the classes defined by all person IDs included in
a facial image database. On the other hand, face verification is a
binary problem, where the objective is to distinguish one class (usu-
ally called positive class) defined by the ID of the person of interest
from the rest of the world (usually called negative class formed by
the IDs of all other persons, who might not even be included in the
facial image database). An illustration of the face recognition and
face verification problems is shown in Figure 1.

One line of work in face verification exploits the power of
Subspace Learning techniques. While it has been shown that unsu-
pervised subspace learning techniques, like Principal Component
Analysis [5], Locally Linear Embedding [6] and Locality Preserv-
ing Projections [7], can successfully capture facial image manifolds,
their unsupervised nature usually leads to lower performance com-
pared to supervised subspace learning approaches. Perhaps the most
well-known and commonly applied supervised subspace learning
technique is Linear Discriminant Analysis (LDA) and its variants
[5, 8, 9]. LDA (under the Gaussian class assumption) defines the
optimal linear projection from the input space to the discriminant
(sub)space where the within-class scatter is minimized, while the
between-class scatter is maximized. Extensions of LDA exploiting
kernels, like Kernel Discriminant Analysis (KDA) [10] and Ker-
nel Reference Discriminant Analysis (KRDA) [11] can also define
non-linear discriminant spaces, greatly enhancing performance in
non-linear problems.

Fig. 1: Illustration of face recognition and face verification problems. (Left) Face recognition is a multi-class problem, where given a new
facial image the answer is the ID of the depicted person. (Right) Face verification is a binary problem, where given a new facial image the
answer is whether the image depicts the ID of interest or not. Here we show the 2-D representations of the facial vectors in ORL dataset [4]
obtained by applying PCA.

IET Research Journals, pp. 1–8
c© The Institution of Engineering and Technology 2015 1



While LDA and its variants have shown to achieve very good
performance in multi-class problems, like face recognition, their per-
formance in face verification problems (which are usually defined
as binary problems) is limited by the fact that the maximal dimen-
sionality of the derived discriminant (sub-)space is restricted by
the number of classes. This is a result of the within-class and
between-class scatters definition, making the maximal rank of the
corresponding matrices for a P -class problem equal to P − 1. That
is, for verification problems, the maximal discriminant (sub-)space
dimensionality derived by LDA is equal to one. Class-Specific
Discriminant Analysis (CSDA) techniques have been proposed to
overcome this restriction by exploiting intra-class and out-of-class
scatter definitions leading to matrices of higher ranks [12, 13, 15,
16]. As a consequence, class-specific techniques have been shown
to outperform their multi-class counterparts in verification prob-
lems, exploiting data representations in discriminant (sub-)spaces of
higher dimensionality.

Another issue that should be appropriately addressed, both for
multi-class and class-specific approaches, is related to the space
and computational costs of their non-linear versions based on ker-
nels. For a training set formed by N samples, standard kernel-based
solutions require O(N2) storage size and O(N3) computations,
rendering their application in today’s large-scale problems difficult.
Solutions based on low-rank approximations [17, 18] and reduced
kernels [19, 20] have been proposed in order to highly reduce both
costs, while achieving satisfactory performance. In our previous
work, we have shown that the non-linear version of CSDA based
on kernels is equivalent to a kernel-regression problem and, thus,
its computational cost can be reduced by exploiting efficient linear
system solutions [22]. In addition, we have shown that eigenanaly-
sis of the graph Laplacians defined in Class-Specific kernel Spectral
Regression can be efficiently computed using a matrix factorization
process taking into account the class labels of the training samples,
leading to an efficient approximate CS-KDA solution [20, 21].

In this paper, we build on top of our previous work [20, 22]
and show that the linear and reduced kernel versions of CSDA
are equivalent to a linear and a reduced kernel regression problem,
respectively. Casting the linear CSDA criterion as a linear regres-
sion problem allows us to view CSDA as a processing block that can
be used for iterative optimization on top of a (possibly deep) neural
network topology. Based on that, we propose a non-linear CSDA
solution based on neural networks. While neural network-based
solutions for multi-class discriminant analysis have been recently
proposed [23–25], this is the first time that neural networks are
used for optimizing class-specific projections. We apply all three
(linear, approximate kernel and neural) CSDA variants on two pub-
licly available datasets describing medium- and large-scale face
verification problems and compare their performance with related
methods.

The paper is structured as follows. In Section 2, we provide an
overview of the face verification problem. Linear and kernel-based
CSDA techniques are briefly described in Section 3. We provide our
analysis in Section 4. We first show that the linear (subsection 4.1)
and reduced kernel (subsection 4.2) versions of CSDA are equivalent
to regression problems using class-specific target vectors. Subse-
quently, we describe the proposed neural network-based CSDA in
subsection 5. Experiments on medium- and large-scale face verifica-
tion problems are provided in Section 7 and conclusions are drawn
in Section 8.

2 Problem Statement

Let us assume that a facial image database is formed by N
images, each depicting a person belonging to an ID set P =
{1, . . . , p, . . . , P}. Let us also assume that these images have been
pre-processed in order to produce the so-called facial image vectors
xi ∈ RD, i = 1, . . . , N . Vector xi represents the i-th facial image
in the database and is followed by an ID label li ∈ P .

Given the above, we would like to determine a class-specific
model discriminating person p from all other persons. We will
define this class-specific model by learning a (non-)linear mapping

from the input space RD to a low-dimensional (discriminant) space
Rdp , dp ≤ D, in which class p is represented by the corresponding
mean vector:

z̄p =
1

Np

∑
i,li=p

zi, (1)

where Np is the cardinality of class p in the facial image database.
Nn = N −Np denotes the cardinality of the negative class (formed
by the facial images not belonging to class p). zi = f(xi,Wp) is
the image of xi in Rdp obtained by optimizing the parametersWp

of function f(·) for achieving the maximal class-specific discrimi-
nation. After determining the (non-)linear mapping parametersWp

and the class mean vector z̄p, a new facial image vector z ∈ Rd cal-
culated by z = f(x,Wp) should be close to z̄p, if it depicts person
p, or far from it, if it depicts another person.

Notations: We define by e ∈ RN a vector of ones, eI ∈ RN a
binary vector having elements [eI ]i = 1 if li = p and [eI ]i = 0 if
li 6= p and eO = e− eI . We also define the matrices EI = eIe

T
I

and EO = eOeTO . X ∈ RD×N is a matrix formed by the facial
vectors xi as columns.

3 Standard Class-Specific Discriminant Analysis

Let us denote by DI and DO the intra-class and out-of-class
distances defined as:

DI =
∑
i,li=p

‖zi − z̄p‖22 =
∑
i,li=p

‖f(xi,Wp)− z̄p‖22 (2)

and

DO =
∑
i,li 6=p

‖zi − z̄p‖22 =
∑
i,li 6=p

‖f(xi,Wp)− z̄p‖22. (3)

The parameters of the class-specific modelWp are optimized so that
the intra-class distance is minimized and the out-of-class distance
is maximized, as illustrated in Figure 2. This can be expressed as
maximizing the criterion:

J (Wp) =
DO(Wp)

DI(Wp)
. (4)

3.1 Linear case

In the case where f(·) corresponds to a linear mapping [12],DI and
DO are given by:

DI =
∑
i,li=p

‖WTxi −WT x̄p‖22 = tr(WTSIW) (5)

and

DO =
∑
i,li 6=p

‖WTxi −WT x̄p‖22 = tr(WTSOW), (6)

where W ∈ RD×dp is the projection matrix, linearly mapping
the input space RD to the discriminant subspace Rdp and x̄p =
1
Np

∑
i,li=p

xi. SI ∈ RD×D and SO ∈ RD×D are the intra-class
and out-of-class scatter matrices defined by:

SI =
∑
i,li=p

(xi − x̄p)(xi − xp)T = XLIX
T , (7)

SO =
∑
i,li 6=p

(xi − x̄p)(xi − xp)T = XLOXT , (8)

where LI = (1− 2
Np

+ 1
N1

p
)eIe

T
I and LO = eOeTO −

1
Np

eIe
T
O −

1
Np

eIe
T
O + 1

Np
eIe

T
I .
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Fig. 2: Face verification criterion. Facial images depicting the per-
son of interest are forced to be as close as possible to the mean of
the positive class (in this case the mean facial image depicted on the
right), while facial images forming the negative class are forced to
be as far as possible for it.

The optimal projection matrix is obtained by solving the trace
ratio problem [26] defined on SI and SO and is formed by the
eigen-vectors of the matrix S = S−1I SO corresponding to the dp
maximal eigen-values. By assuming that the number of images
depicting person p is smaller than the number of the images depict-
ing all other persons in the facial image database (which is usually
the case), the rank of S is equal to Np − 1. Thus, the maximal
dimensionality of the class-specific discriminant space is equal to
dp = min(Np − 1, D).

3.2 Nonlinear case based on kernels

In order to define a non-linear mapping f(·), Class-Specific Ker-
nel Discriminant Analysis [13] applies a two-step process; the input
space RD is first non-linearly mapped to the so-called kernel space
F using a function φ(·), so that:

xi ∈ RD
φ(·)⇒ φ(xi) ∈ F . (9)

Then, a linear mapping Wφ ∈ R|F|×dp is obtained by minimizing
the intra-class and out-of-class distances defined as follows:

DI =
∑
i,li=p

‖WT
φφ(xi)− x̄φp‖22 = tr(WT

φSφIWφ) (10)

and

DO =
∑
i,li 6=p

‖WT
φφ(xi)− x̄φp‖22 = tr(WT

φSφOWφ), (11)

where x̄φp = 1
Np

∑
i,li=p

φ(xi). Here, the intra-class and out-of-
class scatter matrices are defined in the kernel space F by:

SφI =
∑
i,li=p

(φ(xi)− x̄φp )(φ(xi)− x̄φp )T = ΦLIΦ
T , (12)

SφO =
∑
i,li 6=p

(φ(xi)− x̄φp )(φ(xi)− x̄φp )T = ΦLOΦT . (13)

Φ = [φ(x1), . . . , φ(xN )] ∈ R|F|×N is a matrix having as columns
the training data representations in F . The Representer Theorem

[14] states that the linear mapping in F can be expressed as a linear
combination of the training data representation, i.e.:

Wφ = ΦA, (14)

where A ∈ RN×dp . Using (14), we obtainDI = tr(ATKLIKA)
and DO = tr(ATKLOKA), where K = ΦTΦ is the so-called
kernel matrix.

Two solutions have been proposed in order to obtain the opti-
mal matrix A. The first, applies eigenanalysis to the matrix
(KLIK)−1(KLOK) and forms A with the eigen-vectors corre-
sponding to the dp maximal eigen-values [13, 16]. The second one,
noted as Class-Specific Kernel Spectral Regression, applies a two-
step process; eigenanalysis of the matrix L−1I LO in order to obtain
the eigen-vectors corresponding to the dp maximal eigen-values,
i.e. T = [t1, . . . , tdp ], and solution of a kernel regression problem
given by A = K−1T [15]. In [15] it has been also shown that the
eigenanalysis of L−1I LO can be readily obtained by applying a fast
matrix decomposition process. Based on this, an approximate solu-
tion has also been proposed in [20], where the kernel regression step
was replaced by reduced kernel-based regression.

4 Class-Specific Regression

In this Section, we show that class-specific subspace learning is
equivalent to a regression problem. We start by showing that the
linear version of Class-Specific Discriminant Analysis is equivalent
to linear regression using class-specific targets. Subsequently, we
show that the approximate kernel-based version of Class-Specific
Discriminant Analysis can be obtained by applying reduced kernel-
based regression, generalizing our previous results in [20, 22] for the
case where a reduced reference vector set is used for kernel-based
learning. Please note that the above analysis shows that the class
specific kernel regression in [22] is equivalent to the class-specific
kernel spectral regression in [20] in both the cases where standard
and reduced kernels are used. Moreover, we propose a new solution
to the CSDA problem based on neural networks at the end of this
section.

4.1 Linear case

Let us assume that the training vectors are centered with respect
to x̄p

∗. Then, the intra-class and out-of-class scatter matrices are
given by SI = XEIX

T and SO = XEOXT , respectively. We
also define the matrix ST = XXT denoting the total scatter of
the training data with respect to x̄p. It is easy to show that ST =
SI + SO . The optimal projection matrix is obtained by maximizing:

J̃ (W) = J (W) + 1 =
tr(WTSOW)

tr(WTSIW)
+ 1 =

tr(WTSTW)

tr(WTSIW)
.

(15)
Thus, W is obtained by applying eigenanalysis to the matrix S =
ST
−1SI , i.e. by solving the following problem:

XEIX
Tw = λXXTw, λ 6= 0. (16)

Let us now consider a linear regression problem using target
vectors T = [t1, . . . , tdp ], i.e.:

Ĵ (W) = ‖WTX−T‖2F . (17)

Let us also express the data projection matrix as a product of two
matrices W = QR, where Q ∈ RD×dp and R ∈ Rdp×dp . Then,

∗This can always be done by using X← X− 1
Np

XeIe
T .

IET Research Journals, pp. 1–8
c© The Institution of Engineering and Technology 2015 3



we have:

Ĵ = ‖RTQTX−T‖2F . (18)

The saddle point of Ĵ with respect to R is given for R =
(QTXXTQ)−1QTXTT . Substituting R in (18), we obtain:

Ĵ = ‖TXTQ(QTXXTQ)−1QTX−T‖2F
= c− 2tr((QTXXTQ)−1(QTXTTTXTQ). (19)

Thus, the solution of Ĵ is given by solving the following problem:

XTTTXTw = λXXTw, λ 6= 0. (20)

By comparing (20) with (16) we observe that the solution of the
linear version of Class-Specific Discriminant Analysis is equiva-
lent to a linear regression problem, where the target vectors satisfy
TTT = EI . We will show how to calculate such target vectors in
Subsection 4.2.

4.2 Nonlinear case based on kernels

Similar to the linear case, we assume that the training vectors are
centered with respect to x̄φp

∗. Then, the intra-class and out-of-class
scatter matrices expressed in F are given by SφI = ΦEIΦ

T and
SφO = ΦEOΦT , respectively. In addition, we define the matrix
SφT = ΦΦT = SφI + SφO denoting the total scatter of the training
data in F with respect to x̄φp .

Let us express the data projection matrix in F as a linear
combination of K reference vectors Ψ ∈ R|F|×K , i.e.:

Wφ = ΨA, (21)

where A ∈ RK×dp . The optimal A is obtained by maximizing:

J̃ (A) = J (A) + 1 =
tr(ATΨTSφOΨA)

tr(ATΨTSφIΨA)
+ 1

=
tr(ATΨTSφTΨA)

tr(ATΨTSφIΨA)

=
tr(ATΨTΦΦTΨA)

tr(ATΨTΦEIΦTΨA)

=
tr(AT K̃K̃TA)

tr(AT K̃EIK̃TA)
. (22)

Thus, A is obtained by applying eigenanalysis to the matrix
(K̃K̃T )−1(K̃EIK̃

T ), i.e. by solving the following problem:

K̃EIK̃
T a = λK̃K̃T a, λ 6= 0. (23)

Next, we consider a linear regression problem in F using target
vectors T = [t1, . . . , tdp ], i.e.:

Ĵ = ‖WT
φΦ−T‖2F = ‖AT K̃−T‖2F . (24)

where we have also exploited (21).

∗This can always be done by centering the kernel matrix K with respect to
1

Np
KeI . Test kernel vectors should be centered accordingly.

Similar to the linear case, we set A = QR, where Q ∈ RK×dp
and R ∈ Rdp×dp . Then, we have:

Ĵ = ‖RTQT K̃−T‖2F . (25)

The saddle point of Ĵ with respect to R is given for R =
(QT K̃K̃TQ)−1QT K̃TT . Substituting R in (25), we obtain:

Ĵ = ‖TK̃TQ(QT K̃K̃TQ)−1QT K̃−T‖2F
= c− 2tr((QT K̃K̃TQ)−1(QT K̃TTTK̃TQ). (26)

Thus, the solution of Ĵ is given by solving for:

K̃TTTK̃Tq = λK̃K̃Tq, λ 6= 0. (27)

By comparing (27) with (23) we observe that the solution of
the approximate kernel Class-Specific Discriminant Analysis [20] is
equivalent to a reduced kernel regression problem, where the tar-
get vectors satisfy TTT = EI . This is not surprising, since the
kernel-based solution is obtained by applying the method described
in subsection 4.1 in F .

When the training vectors are used as reference vectors, i.e. when
Ψ = Φ, the above analysis shows that the Class-Specific Kernel
Discriminant Analysis method is equivalent to (low-rank) kernel
regression, which is the case of [22]. When a reduced kernel is
used, the above analysis is equivalent to Approximate Class-Specific
Kernel Discriminant Analysis (ACSKDA) [20]. However, here we
should note that while in ACSKDA the analysis involves the intra-
class and out-of-class scatter matrices, in the above analysis the
intra-class and total scatter matrices are used. Moreover, as has been
shown in [20], where a Spectral Regression process is used, refer-
ence vectors can be defined by using a subset of the training vectors,
or by applying clustering on the training data and using the clus-
ter centers. This case corresponds to an approximate solution of
the original Class-Specific Kernel Discriminant Analysis. We have
observed that the use of cluster centers, e.g. obtained by applying
K-Means to the training vectors, as reference vectors provides good
performance, when compared to other alternatives [20].

Target vectors used in both linear and non-linear case can be cal-
culated by applying an efficient orthogonalization technique exploit-
ing the (class-specific) labels of the training data, as we have shown
in our previous work [22]. This process is illustrated in Pseudocode
1.

5 Neural Class-Specific Regression

As has been shown above, both linear and approximate kernel Class-
Specific Discriminant Analysis approaches are equivalent to linear
regression problems in the RD and F , respectively, using the same
target vectors defined based on the (class-specific) training labels
(Pseudocode 1). In order to derive a neural network based solution,
let us define (with some abuse of notation) a non-linear mapping
from the input space RD to a feature space RL obtained by applying
a non-linear function g(xi,Wn), such that:

xi ∈ RD
g(·,Wn)⇒ hi ∈ RL. (28)

After mapping the training data in RL, a linear projection can be
obtained by solving the CSDA problem (15), or its equivalent class-
specific regression problem (17), as illustrated in Figure 3. That
is, the neural network-based class-specific mapping is obtained by
minimizing:

J (W,Wn) = ‖WTH−T‖2F , (29)

where H is a function ofWn, i.e. H = g(X,Wn).
The parameters of the above-described class-specific neural net-

work are initialized randomly and can be optimized as follows:
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• Batch-based optimization: In this case, the entire training set X
is fed to the network in order to obtain the data representations in
RL and the optimal linear projection matrix W for the epoch t is,
subsequently calculated by:

W(t) = H†
(t)

TT , (30)

where the symbol † denotes the pseudo-inverse of a matrix. The
training error, then it is used in order to update the parameters of the
network Wn, based on gradient descent. Multiple training epoches
are applied using the above-described process.
• Mini batch-based optimization: In this case, we regard the entire
process as a neural network having nonlinear activation functions
in all layers, except the last one which is formed by linear neurons.
Thus, the optimization of both the network’s parametersWn and the
linear projection W can be performed sequentially, following mini
batch-based gradient descent optimization.

We have found in our preliminary experiments that the latter
approach leads to much faster solutions achieving good perfor-
mance, when compared to the first one, and we use it in all our exper-
iments. Moreover, as will be describe in Section 7, we jointly train
the network parameters Wn for multiple class-specific problems.
This approach greatly speeds up the training process.

Pseudocode 1: Calculation of T
1: procedure T = TARGETS_CALCULATION(l, p, dp)
2:
3: N = length(l);
4: T = rand(2, dp + 1); Z = zeros(N, dp + 1);
5: f1 = find(l == p); f2 = find(l 6= p);
6: Z(f1, :) = repmat(T (1, :), length(f1), 1);
7: Z(f2, :) = repmat(T (2, :), length(f2), 1);
8: Z(:, 1) = ones(N, 1)/

√
N ;

9: M = qr(Z); M(:, 1) = []; T = MT

6 Discussion

Here we provide discussion related to the properties of the class-
specific regression models, compared to the original models based
on eigenanalysis. We start by providing the time complexity of
each variant. Subsequently, we discuss some limitations of the

class-specific regression-based models and possible ways to address
them.

In the linear case, the class-specific regression model involves the
following processing steps:

• Data centering, having a time complexity of O(DN).
• Calculation of the target vectors T, having a time complexity of
O(NpN − 1

3N
3
p ) [28].

• Calculation of W. In the case where a Cholesky decomposition-
based solution is used, this step has a time complexity of O( 16D

3 +

(Np +N)D2) [22].

Thus, the overall time complexity of the linear class-specific regres-
sion model is O( 16D

3 + 1
6D

3 + (Np +N)D2 +NpN − 1
3N

3
p +

DN).
The eigenanalysis based CSDA method involves the following

processing steps:

• Data centering, having a time complexity of O(DN).
• Calculation of SI and SO , having time complexity of O(D2N).
• Calculation of S = S−1I SO , having time complexity ofO(2D3).
• Eigenanalysis of S, having time complexity of O(D3).

Thus, the overall time complexity of CSDA is O(3D3 +D2N +
DN). Comparing the two approaches, we can see that both are linear
with respect to the number of samples N and cubic with respect to
the data dimensionality D.

The time complexities of CS-KDA [15, 16] is equal to
O( 403 N

3 + (D + dp)N2), while the time of the ACSKDA is equal
to O((N2

p + dp +D)N +K3 + dpK
2 − 1

3N
3
p ) [20]. As can be

seen, by adopting an approximate kernel-based solution the time
complexity becomes a cubic function of the number of reference
vectors and positive samples K and Np, respectively. Regarding the
time complexity of the neural network-based solution, it is a function
of the number of parameters of the adopted architecture. How-
ever, by taking into account the high parallelization of feedforward
networks, the time cost can be highly reduced.

One of the disadvantages of adopting a regression model is that,
since such models optimize the mean square error with respect to the
targets, the ratio between the cardinalities of the positive and neg-
ative classes is important. That is, in the case where the number of
positive samples is much lower than the number of negative samples,
the solution of the regression model will focus more on providing
small training error on the negative class, while achieving a high
error on the positive samples. In order to address this issue, weighted
regression models can be adopted that increase the cost of training
errors on the positive samples. Similar weighting schemes have also

Fig. 3: Neural network-based class-specific regression. The neural network is trained by using the facial image vectors xi ∈ RD and the
class-specific target vectors ti ∈ Rdp forming the matrices X and T, respectively. After training, the network maps an input vector xi to
hi ∈ RL using the nonlinear function g(·,Wn). A linear mapping W ∈ Rdp×L is subsequently used to linearly map hi to the corresponding
class-specific representation in Rdp .
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been used for eigenanalysis based discriminant analysis methods
[29, 30]. A disadvantage of all class-specific models compared to
their multi-class counterparts is related to their application in multi-
class problems. In that case one needs to learn multiple models (in
an one-versus-rest manner) increasing the overall computational cost
linearly with respect to the number of classes. However, as will
be discussed in subsection 7.4, in the case of class-specific regres-
sion models the overall computational cost can be highly reduced.
Finally, one advantage of the proposed neural network-based class-
specific model is the fact that it can easily extended in order to learn
class-specific representations directly from (raw image) data, e.g. by
including convolutional layers at the beginning of the architecture
depicted in Figure 3.

7 Experiments

In this Section, we provide experimental results obtained by apply-
ing the regression-based CSDA methods described above on two
face verification problems. First, we describe the two datasets used
in our experiments. Later, we provide details on the experimental
setup followed and speed up schemes we used in order to accelerate
the training of the multiple class-specific models involved in each
experiment.

7.1 Datasets

We have employed two facial image datasets, namely PubFig+LFW
[31] and Youtube Faces (YTFaces) [27]. The PubFig+LFW dataset
describes a medium-scale facial image analysis problem. It is formed
by the 47189 facial images depicting 200 persons coming from the
Public Figures (PubFig) and the Labeled Faces in the Wild (LFW)
datasets. The YTFaces dataset has been collected from YouTube. It
is formed by 621126 facial images depicting 1595 person ID classes
and it corresponds to a highly imbalanced problem. We kept the
classes formed by at least 500 images, leading to a dataset formed
by 370319 images depicting 340 persons. Figure 4 illustrates images
from these two datasets.

7.2 Experimental setup

On each of the datasets, we form multiple verification problems.
That is, each ID class is split in two sets, one to be used for train-
ing and the remaining one for evaluation. On the the PubFig+LFW
dataset we use the provided 75%/25% partition. Since there is no
widely adopted dataset partitioning for single image-based verifi-
cation on the YouTube dataset, we perform five experiments and
on each experiment we use a random 70%/30% partition of each
class. Here we should note that YouTube Faces recently has been
used for face verification using image pairs, e.g. in [27], however,
in this paper we apply single-image verification. Facial images of
the PubFig+LFW and YouTube Faces datasets are represented by
using the facial image representations suggested in [31] and [27],
respectively.

On each experiment, we solve P verification problems (P = 200
for PubFig+LFW and P = 340 for YouTube Faces). For each verifi-
cation problem p, we use the vectors representing the training facial
images of class p as positive samples and the vectors representing
the training facial images of the rest of the classes in as negative
samples. The class-specific discriminant (sub-)space is determined
by applying each of the methods and the class representation in the
discriminant (sub-)space z̄p is calculated. Subsequently, the repre-
sentations of the test facial images of all classes in that discriminant
(sub-)space zj are calculated and their similarity to the class repre-
sentation is calculated using sj = ‖zj − z̄p‖−12 . Similarity values
of all test images are sorted in a decreasing order and the equal
error rate (EER) metric is calculated. The above-described process
is repeated for all ID classes in the dataset and the performance of
each method is measured by using the mean EER value and the
corresponding standard deviation (over the multiple experiments).

.

Fig. 4: Facial images depicting persons from (top) PubFig+LFW
and (bottom) YouTube Faces datasets.

7.3 Benchmark methods

We tested the performance of all three (linear, approximate kernel
and neural network-based) class-specific regression models (Table
1). These models are referred to as LinCSDA, AK-CSDA and
NN-CSDA, respectively. We also tested the performance obtained
by applying the following methods: Support Vector Machine
(SVM), Ridge Regression-based classification (RRC), LDA, CS-
LDA, Extreme Learning Machine (ELM) [32], Reduced Kernel Sup-
port Vector Machine (RKSVM) [33], Approximate Kernel Extreme
Learning Machine (AKELM) [34, 35] and Random Feature Regres-
sion (RFR) [36]. For the non-linear methods using reference vectors,
we applied multiple experiments using the reference vector set cardi-
nalities of K = {500, 1000, 1500, 2000, 2500} and report the best
performance. For the class-specific approaches, we applied multi-
ple experiments using discriminant (sub-)space dimensionality dp =
d, p = 1, . . . , P for d = {1, 5, 10}.

7.4 Implementation details

In the neural network-based approach, we adopted two single hidden
layer networks for both datasets. Similarly, we set the learning rate
as 1e− 7, the minibatch size n = 200, the number of epoches as
40 and sigmoid function as the activation function throughout the
networks on both datasets. We experimented numerous topologies
with the number of neurons L = {100, 200, 500, 1000, 1500} using
a set of NVIDIA Tesla K80 GPUs in a parallel setting, and report the
best collective results based on the validation set in Table 2. On the
PubFig+LFW dataset, the number of hidden neurons is 1500 while
that of hidden neurons on YouTube Faces is 1000. We omitted the
result with the number of dimensionality equal to 10 in the subspace
due to the memory constraints of the graphic cards.

On the YouTube Faces dataset we perform five experiments and
report the average EER and the corresponding standard deviation
over all experiments. We have observed that the five datasets pro-
vided by PubFig+LFW database correspond to the same P = 2000
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Table 2 Performance (mean ERR %) of linear meth-
ods on PubFig+LFW dataset

Method Using N = 104 [20] Using N = 35469
SVM 7.86±0.43 7.43
RRC 17.48±0.15 17.25
LDA 15.61±0.27 17.24
CS-LDA 14.69±0.34 15.63

face verification problems. For the linear methods, the standard devi-
ation values in [20] correspond to the deviation of the performance
due to different training subsets (N = 10000) employed. A com-
parison of these results and those obtained using all training data is
provided in Table 2. For the (approximate) kernel-based methods,
the provided standard deviations correspond to the deviation of the
performance due to different reference vectors selected over the five
experiments (for different random K-Means initializations).

In order to speed up the training process over the multiple verifica-
tion problems of each experiment, we exploit the fact that the train-
ing samples of all verification problems are the same (what changes
is the labels used in order to define the target vectors, as detailed in
Section 4 and Pseudocode 1). Let us denote by Tp the matrix formed
by the target vectors used for the determination of the discrimi-
nant (sub-)space of class p. Then, the solution of the (class-specific)
regression problem (17) is given by W = (XXT )−1XTT

p . That
is, the matrix X† = (XXT )−1X is used in all verification prob-
lems and can be calculated once. Subsequently, the determination of
all class-specific discriminant sub-spaces can be obtained by apply-
ing a matrix multiplication between the matrices X† and TT

p . In a
similar way, we cluster the training vectors once in order to define
the reference vectors, and calculate the matrix K̃† = (K̃K̃T )−1K̃,
which is used for all approximate kernel class-specific discriminant
spaces, only once. For the neural network-based CSDA, we use the
same network for all verification models, based on the intuition that
such a choice will lead to a better representation of the facial images
in the (shared) feature space RL. We implemented this stacking
the target vectors of all class-specific regression models during the
training process. During evaluation, we use the class-specific repre-
sentations as described earlier in this subsection in order to measure
the performance of each method.

7.5 Results

The regression-based class-specific methods provide good perfor-
mance in both face verification problems. Linear class-specific
regression achieves better performance when compared to the multi-
class linear discriminant and regression methods, and similar per-
formance to SVM. Approximate class-specific regression [20] (cor-
responding to the reduced kernel-based class-specific regression in
Subsection 4.2) outperforms the related multi-class regression mod-
els. Class-specific regression based on neural networks achieves
competitive performance in PubFig+LFW dataset, which corre-
sponds to a medium-scale verification problem, while it outperforms
all non-linear models in the large-scale verification problem of
YouTube Faces dataset. We believe that this is due to cardinality of
the data (we have observed that convergence of the networks was
difficult for PubFig+LFW dataset). We observe that linear models
achieve better performance in both datasets. This might be due to the
adopted data representations (this might also be the reason why both
[27] and [31] use linear models in their experiments). For nonlinear
methods, we notice that the neural networks provide a performance
gain over the kernel methods when the dataset size is large.

8 Conclusions

In this paper, we showed that class-specific subspace learning is
equivalent to a regression problem using class-specific target vec-
tors. Based on that, we derived linear, reduced kernel and neural
network-based class-specific regression models suited for large-
scale learning problems. Interesting future research directions based

Table 1 Performance (mean ERR %) of linear and non-linear methods on
PubFig+LFW and YouTube Faces datasets

Method PubFig+LFW YouTube Faces
SVM 7.43 1.68±0.09
RRC 17.25 21.9±1.34
LDA 17.24 28.27±0.66
CS-LDA (d=1) 15.63 23.62±0.77
CS-LDA (d=5) 6.05 1.81±1.41
CS-LDA (d=10) 5.89 2.71±1.89
LinCSDA (d=1) 17.24 22.13±1.3
LinCSDA (d=5) 9.34 0.87±0.05
LinCSDA (d=10) 9.45 0.53±0.02
ELM [20] 25.81±0.91 (K=2500) 17.08±0.57 (K=1500)
RKSVM [20] 18.95±0.46 (K=2500) 15.44±0.55 (K=1500)
AKELM [20] 17.21±0.98 (K=2000) 12.02±0.57 (K=500)
RFR [20] 20.62±0.84 (K=2500) 27.67±0.48 (K=2000)
AK-CSDA (d=1) [20] 18.4±0.72 (K=2500) 18.92±0.57 (K=1000)
AK-CSDA (d=5) [20] 11.49±0.82 (K=2500) 12.98±0.93 (K=500)
AK-CSDA (d=10) [20] 11.65±1.09 (K=2500) 2.26±0.11 (K=2500)
NN-CSDA (d=1) 17.94 (L=1500) 22.47±1.05 (L=1000)
NN-CSDA (d=5) 12.31 (L=1500) 1.96±0.39 (L=1000)
NN-CSDA (d=10) 12.38 (L=1500) -

on the derived solutions include the application of class-specific
models directly on (raw) image/video data for representation learn-
ing, e.g. by using convolutional and recurrent neural layers and the
investigation of class-specific representations obtained by using such
learning schemes.
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