4,523 research outputs found

    Quantum state transformations and the Schubert calculus

    Full text link
    Recent developments in mathematics have provided powerful tools for comparing the eigenvalues of matrices related to each other via a moment map. In this paper we survey some of the more concrete aspects of the approach with a particular focus on applications to quantum information theory. After discussing the connection between Horn's Problem and Nielsen's Theorem, we move on to characterizing the eigenvalues of the partial trace of a matrix.Comment: 40 pages. Accepted for publication in Annals of Physic

    Morse theory on spaces of braids and Lagrangian dynamics

    Get PDF
    In the first half of the paper we construct a Morse-type theory on certain spaces of braid diagrams. We define a topological invariant of closed positive braids which is correlated with the existence of invariant sets of parabolic flows defined on discretized braid spaces. Parabolic flows, a type of one-dimensional lattice dynamics, evolve singular braid diagrams in such a way as to decrease their topological complexity; algebraic lengths decrease monotonically. This topological invariant is derived from a Morse-Conley homotopy index and provides a gloablization of `lap number' techniques used in scalar parabolic PDEs. In the second half of the paper we apply this technology to second order Lagrangians via a discrete formulation of the variational problem. This culminates in a very general forcing theorem for the existence of infinitely many braid classes of closed orbits.Comment: Revised version: numerous changes in exposition. Slight modification of two proofs and one definition; 55 pages, 20 figure

    Solvability and regularity for an elliptic system prescribing the curl, divergence, and partial trace of a vector field on Sobolev-class domains

    Full text link
    We provide a self-contained proof of the solvability and regularity of a Hodge-type elliptic system, wherein the divergence and curl of a vector field are prescribed in an open, bounded, Sobolev-class domain, and either the normal component or the tangential components of the vector field are prescribed on the boundary. The proof is based on a regularity theory for vector elliptic equations set on Sobolev-class domains and with Sobolev-class coefficients.Comment: 49 Pages, improved exposition and corrected typo

    Non-holonomy, critical manifolds and stability in constrained Hamiltonian systems

    Full text link
    We approach the analysis of dynamical and geometrical properties of nonholonomic mechanical systems from the discussion of a more general class of auxiliary constrained Hamiltonian systems. The latter is constructed in a manner that it comprises the mechanical system as a dynamical subsystem, which is confined to an invariant manifold. In certain aspects, the embedding system can be more easily analyzed than the mechanical system. We discuss the geometry and topology of the critical set of either system in the generic case, and prove results closely related to the strong Morse-Bott, and Conley-Zehnder inequalities. Furthermore, we consider qualitative issues about the stability of motion in the vicinity of the critical set. Relations to sub-Riemannian geometry are pointed out, and possible implications of our results for engineering problems are sketched.Comment: Latex, 58 page
    corecore