Recent developments in mathematics have provided powerful tools for comparing
the eigenvalues of matrices related to each other via a moment map. In this
paper we survey some of the more concrete aspects of the approach with a
particular focus on applications to quantum information theory. After
discussing the connection between Horn's Problem and Nielsen's Theorem, we move
on to characterizing the eigenvalues of the partial trace of a matrix.Comment: 40 pages. Accepted for publication in Annals of Physic