171 research outputs found

    On the Minimum/Stopping Distance of Array Low-Density Parity-Check Codes

    Get PDF
    In this work, we study the minimum/stopping distance of array low-density parity-check (LDPC) codes. An array LDPC code is a quasi-cyclic LDPC code specified by two integers q and m, where q is an odd prime and m <= q. In the literature, the minimum/stopping distance of these codes (denoted by d(q,m) and h(q,m), respectively) has been thoroughly studied for m <= 5. Both exact results, for small values of q and m, and general (i.e., independent of q) bounds have been established. For m=6, the best known minimum distance upper bound, derived by Mittelholzer (IEEE Int. Symp. Inf. Theory, Jun./Jul. 2002), is d(q,6) <= 32. In this work, we derive an improved upper bound of d(q,6) <= 20 and a new upper bound d(q,7) <= 24 by using the concept of a template support matrix of a codeword/stopping set. The bounds are tight with high probability in the sense that we have not been able to find codewords of strictly lower weight for several values of q using a minimum distance probabilistic algorithm. Finally, we provide new specific minimum/stopping distance results for m <= 7 and low-to-moderate values of q <= 79.Comment: To appear in IEEE Trans. Inf. Theory. The material in this paper was presented in part at the 2014 IEEE International Symposium on Information Theory, Honolulu, HI, June/July 201

    On the Minimum Distance of Array-Based Spatially-Coupled Low-Density Parity-Check Codes

    Full text link
    An array low-density parity-check (LDPC) code is a quasi-cyclic LDPC code specified by two integers qq and mm, where qq is an odd prime and m≤qm \leq q. The exact minimum distance, for small qq and mm, has been calculated, and tight upper bounds on it for m≤7m \leq 7 have been derived. In this work, we study the minimum distance of the spatially-coupled version of these codes. In particular, several tight upper bounds on the optimal minimum distance for coupling length at least two and m=3,4,5m=3,4,5, that are independent of qq and that are valid for all values of q≥q0q \geq q_0 where q0q_0 depends on mm, are presented. Furthermore, we show by exhaustive search that by carefully selecting the edge spreading or unwrapping procedure, the minimum distance (when qq is not very large) can be significantly increased, especially for m=5m=5.Comment: 5 pages. To be presented at the 2015 IEEE International Symposium on Information Theory, June 14-19, 2015, Hong Kon

    The Trapping Redundancy of Linear Block Codes

    Full text link
    We generalize the notion of the stopping redundancy in order to study the smallest size of a trapping set in Tanner graphs of linear block codes. In this context, we introduce the notion of the trapping redundancy of a code, which quantifies the relationship between the number of redundant rows in any parity-check matrix of a given code and the size of its smallest trapping set. Trapping sets with certain parameter sizes are known to cause error-floors in the performance curves of iterative belief propagation decoders, and it is therefore important to identify decoding matrices that avoid such sets. Bounds on the trapping redundancy are obtained using probabilistic and constructive methods, and the analysis covers both general and elementary trapping sets. Numerical values for these bounds are computed for the [2640,1320] Margulis code and the class of projective geometry codes, and compared with some new code-specific trapping set size estimates.Comment: 12 pages, 4 tables, 1 figure, accepted for publication in IEEE Transactions on Information Theor

    Stopping Set Distributions of Some Linear Codes

    Full text link
    Stopping sets and stopping set distribution of an low-density parity-check code are used to determine the performance of this code under iterative decoding over a binary erasure channel (BEC). Let CC be a binary [n,k][n,k] linear code with parity-check matrix HH, where the rows of HH may be dependent. A stopping set SS of CC with parity-check matrix HH is a subset of column indices of HH such that the restriction of HH to SS does not contain a row of weight one. The stopping set distribution {Ti(H)}i=0n\{T_i(H)\}_{i=0}^n enumerates the number of stopping sets with size ii of CC with parity-check matrix HH. Note that stopping sets and stopping set distribution are related to the parity-check matrix HH of CC. Let H∗H^{*} be the parity-check matrix of CC which is formed by all the non-zero codewords of its dual code C⊥C^{\perp}. A parity-check matrix HH is called BEC-optimal if Ti(H)=Ti(H∗),i=0,1,...,nT_i(H)=T_i(H^*), i=0,1,..., n and HH has the smallest number of rows. On the BEC, iterative decoder of CC with BEC-optimal parity-check matrix is an optimal decoder with much lower decoding complexity than the exhaustive decoder. In this paper, we study stopping sets, stopping set distributions and BEC-optimal parity-check matrices of binary linear codes. Using finite geometry in combinatorics, we obtain BEC-optimal parity-check matrices and then determine the stopping set distributions for the Simplex codes, the Hamming codes, the first order Reed-Muller codes and the extended Hamming codes.Comment: 33 pages, submitted to IEEE Trans. Inform. Theory, Feb. 201

    An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Full text link
    The error pattern correcting code (EPCC) can be constructed to provide a syndrome decoding table targeting the dominant error events of an inter-symbol interference channel at the output of the Viterbi detector. For the size of the syndrome table to be manageable and the list of possible error events to be reasonable in size, the codeword length of EPCC needs to be short enough. However, the rate of such a short length code will be too low for hard drive applications. To accommodate the required large redundancy, it is possible to record only a highly compressed function of the parity bits of EPCC's tensor product with a symbol correcting code. In this paper, we show that the proposed tensor error-pattern correcting code (T-EPCC) is linear time encodable and also devise a low-complexity soft iterative decoding algorithm for EPCC's tensor product with q-ary LDPC (T-EPCC-qLDPC). Simulation results show that T-EPCC-qLDPC achieves almost similar performance to single-level qLDPC with a 1/2 KB sector at 50% reduction in decoding complexity. Moreover, 1 KB T-EPCC-qLDPC surpasses the performance of 1/2 KB single-level qLDPC at the same decoder complexity.Comment: Hakim Alhussien, Jaekyun Moon, "An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Design and Analysis of Graph-based Codes Using Algebraic Lifts and Decoding Networks

    Get PDF
    Error-correcting codes seek to address the problem of transmitting information efficiently and reliably across noisy channels. Among the most competitive codes developed in the last 70 years are low-density parity-check (LDPC) codes, a class of codes whose structure may be represented by sparse bipartite graphs. In addition to having the potential to be capacity-approaching, LDPC codes offer the significant practical advantage of low-complexity graph-based decoding algorithms. Graphical substructures called trapping sets, absorbing sets, and stopping sets characterize failure of these algorithms at high signal-to-noise ratios. This dissertation focuses on code design for and analysis of iterative graph-based message-passing decoders. The main contributions of this work include the following: the unification of spatially-coupled LDPC (SC-LDPC) code constructions under a single algebraic graph lift framework and the analysis of SC-LDPC code construction techniques from the perspective of removing harmful trapping and absorbing sets; analysis of the stopping and absorbing set parameters of hypergraph codes and finite geometry LDPC (FG-LDPC) codes; the introduction of multidimensional decoding networks that encode the behavior of hard-decision message-passing decoders; and the presentation of a novel Iteration Search Algorithm, a list decoder designed to improve the performance of hard-decision decoders. Adviser: Christine A. Kelle

    From Cages to Trapping Sets and Codewords: A Technique to Derive Tight Upper Bounds on the Minimum Size of Trapping Sets and Minimum Distance of LDPC Codes

    Full text link
    Cages, defined as regular graphs with minimum number of nodes for a given girth, are well-studied in graph theory. Trapping sets are graphical structures responsible for error floor of low-density parity-check (LDPC) codes, and are well investigated in coding theory. In this paper, we make connections between cages and trapping sets. In particular, starting from a cage (or a modified cage), we construct a trapping set in multiple steps. Based on the connection between cages and trapping sets, we then use the available results in graph theory on cages and derive tight upper bounds on the size of the smallest trapping sets for variable-regular LDPC codes with a given variable degree and girth. The derived upper bounds in many cases meet the best known lower bounds and thus provide the actual size of the smallest trapping sets. Considering that non-zero codewords are a special case of trapping sets, we also derive tight upper bounds on the minimum weight of such codewords, i.e., the minimum distance, of variable-regular LDPC codes as a function of variable degree and girth

    On Dyadic Parity Check Codes and Their Generalizations

    Get PDF
    In order to communicate information over a noisy channel, error-correcting codes can be used to ensure that small errors don’t prevent the transmission of a message. One family of codes that has been found to have good properties is low-density parity check (LDPC) codes. These are represented by sparse bipartite graphs and have low complexity graph-based decoding algorithms. Various graphical properties, such as the girth and stopping sets, influence when these algorithms might fail. Additionally, codes based on algebraically structured parity check matrices are desirable in applications due to their compact representations, practical implementation advantages, and tractable decoder performance analysis. This dissertation focuses on codes based on parity check matrices that are dyadic, n-adic, or quasi-dyadic (QD), meaning the parity check matrix representation is block structured with dyadic matrices as blocks. Depending on the number of nonzero positions in the leading row of each block, these codes may be either low density or moderate density. Since each block is reproducible, the resulting QD codes have similar advantages to quasi-cyclic (QC) codes. We examine basic code properties of dyadic, n-adic, and QD parity check codes, including bounds on the dimension and minimum distance, cycle structure of the corresponding Tanner graph, and their possible use in quantum code constructions. We also consider the relationship between cycle codes of graphs and cycle codes of their lifts. Advisor: Christine A. Kelle
    • …
    corecore