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In order to communicate information over a noisy channel, error-correcting codes

can be used to ensure that small errors don’t prevent the transmission of a message.

One family of codes that has been found to have good properties is low-density parity

check (LDPC) codes. These are represented by sparse bipartite graphs and have low-

complexity graph-based decoding algorithms. Various graphical properties, such as

the girth and stopping sets, influence when these algorithms might fail. Additionally,

codes based on algebraically structured parity check matrices are desirable in appli-

cations due to their compact representations, practical implementation advantages,

and tractable decoder performance analysis.

This dissertation focuses on codes based on parity check matrices that are dyadic,

n-adic, or quasi-dyadic (QD), meaning the parity check matrix representation is block

structured with dyadic matrices as blocks. Depending on the number of nonzero

positions in the leading row of each block, these codes may be either low density

or moderate density. Since each block is reproducible, the resulting QD codes have

similar advantages to quasi-cyclic (QC) codes. We examine basic code properties

of dyadic, n-adic, and QD parity check codes, including bounds on the dimension

and minimum distance, cycle structure of the corresponding Tanner graph, and their

possible use in quantum code constructions. We also consider the relationship between

cycle codes of graphs and cycle codes of their lifts.
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Chapter 1

Introduction

Consider a situation in which we have some information we would like to transmit.

Some examples include saving a file on a computer, calling a friend on the phone, and

making a QR code to send people to a particular website. In each situation, there is

a chance that something may go wrong in the transmission process. In the QR code

example, the entire code may not be visible, or perhaps a section is smudged. In each

situation, though, error-correcting codes can be used in order to ensure that small

errors do not prevent recovery of the information.

There are a wide variety of methods for constructing codes, including graph-based

codes with iterative decoders, which give a method for correcting errors when using

these codes. These have been shown to achieve near-capacity performance on sev-

eral communication channels, efficiently correcting errors nearly up to the theoretical

bound, and have replaced classical codes in many applications [14]. Low density

parity check (LDPC) codes, characterized by having sparse parity check matrix rep-

resentations, are one such family of graph-based codes. For practical implementation,

the design of short to moderate length codes with algebraic structure is desired. Thus,

array-based LDPC codes can be constructed, which have parity check matrices with

block decomposition form. When the blocks are circulants, one obtains quasi-cyclic

low density parity check (QC-LDPC) codes. Such codes have long been regarded as
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good candidates in practice due to their efficient practical implementation, compact

representation, and good decoder performance, as in [8, 20, 37].

Codes with compact representation are also desirable. For example, in code-

based cryptography, the McEliece cryptosystem, proposed in 1978 by Robert McEliece

[19], uses Goppa codes and relies on the difficulty of decoding a vector in a random

linear code. The McEliece cryptosystem is a public key cryptosystem in which a

generator matrix with an efficient decoding algorithm is the private key, and another

generator matrix for the code without such a decoding algorithm is the public key. To

encrypt a message, the message is multiplied by the generator matrix, and a random

error is added to the message. To decrypt the message, this codeword with error

is decoded by the indented receiver with the efficient decoding algorithm [19]. The

primary limitation of the cryptosystem is that the public key is too large [1], which

has motivated searches for codes with compact representation.

In an effort to find such codes, reproducible and quasi-reproducible codes were

introduced in [28]. These codes have parity check matrices specifiable using a small

subset of their rows and a set of transformations. While cyclic and quasi-cyclic codes

belong to this class, so do many others. Quasi-dyadic parity check codes have a block

decomposition using dyadic matrices as blocks. The first row of each dyadic matrix

is enough to specify the block, and the number of entries in the first row determines

the density of the matrix. Quasi-dyadic low density parity check (QD-LDPC) codes

have similar advantages to QC-LDPC codes, such as efficient representation and com-

parable parameters, and therefore have potential to be useful in many applications.

Indeed, codes with QD structure were considered in [21], and later in [23] and [28].

Moreover, [2] analyzed QD arithmetic and showed that the structure may be exploited

to yeild efficient encoding and decoding algorithms.

In this dissertation, we investigate the properties of QD-LDPC codes and gener-
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alizations to quasi-n-adic LDPC codes to understand their potential for other coding

theory applications. In particular, we ask basic questions on the dimension, girth, and

cycle structure of these code families, the latter two of which are relevant for iterative

decoding performance. We also derive an upper bound on the minimum distance of

these codes. Moreover, we give an explicit example of a quasi-triadic LDPC code that

has similar parameters to a well-known QC-LDPC code, further demonstrating that

QD codes and their variations have potential to be useful in practice. We also take

an initial look at the use of QD codes in quantum coding theory.

This dissertation is organized as follows. Chapter 2 contains background informa-

tion on codes and n-adic matrices. We then consider various properties of quasi-n-adic

matrices in Chapter 3, including an isomorphism to a polynomial quotient ring for

the special case of n = 2. In Chapter 4, we continue looking at the special case of

n = 2 to analyze some code parameters and consider applications in quantum coding

theory. The analysis of code parameters for n-adic and quasi-n-adic codes continues

in Chapters 5 and 6. In Chapter 7, we consider taking lifts of graphs and the cycle

codes resulting from lifts. Finally, Chapter 8 concludes the dissertation.

Parts of Chapters 3, 5, and 6 appear in joint work with Kelley [17]. The material

in Chapters 3, 4, 5, and 6 also appears in joint work with Pllaha and Kelley [18].
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Chapter 2

Preliminaries

Recall our situation at the beginning of Chapter 1, where we wanted to transmit in-

formation and correct some number of errors in the process. We address this problem

using a code. A code C of length n over an alphabet A is a subset C ⊆ An. If C is a

k-dimensional subspace of Fnq , then C is an [n, k]q linear code. Here, k is the dimen-

sion of the code, i.e. dim(C) = k, and we are able to send k pieces of information

using n transmitted elements. These transmitted tuples are called codewords. When

a codeword is transmitted over a channel, some errors may be introduced, as noted

earlier.

Various properties of codes are used to determine how well a particular code can

transmit information. One can measure the efficiency of a code C using its rate,

k/n. Additionally, we can consider properties which can be helpful when decoding

messages which may contain errors. The Hamming distance between two codewords

d(u, v) is the number of entries in which they differ. The minimum distance dmin of

a code is the smallest distance between any two codewords, i.e.

dmin(C) := min
u,v∈C

d(u, v).

Computing the minimum distance for a general code can be difficult, but it is
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straightforward to show that in a linear code, the minimum distance can be found by

considering the nonzero entries in each codeword. The weight wt(u) of a codeword is

the number of nonzero entries in u, and if C is a linear code, the minimum distance

of C is equal to the smallest weight of a nonzero codeword.

A larger minimum distance for a code guarantees a greater ability to correct errors

in messages. If the Hamming distance between a received message and a codeword is

at most ⌊dmin−1
2

⌋, then that codeword is the unique codeword closest to the received

message. Because the probability of errors in transmission is assumed to be relatively

low, the closest codeword is the most likely to have been transmitted. Thus, if we

have at most ⌊dmin−1
2

⌋ errors, each received message can be decoded to its unique

closest codeword. This implies that codes with larger minimum distances can correct

more errors.

Linear codes are often defined by a matrix which generates the subspace or for

which the subspace is the kernel. A generator matrix G of a linear code C is a matrix

such that the rows of G form a generating set for C. Similarly, a parity check matrix

H of a linear code C is a matrix such that HcT = 0 if and only if c is a codeword in

C.

The dual code of a linear code C in Fnq is defined as

C⊥ = {u ∈ Fnq | u · c ≡ ucT = 0 for all c ∈ C}. (2.1)

Thus, a parity check matrix of a code is a generator matrix for its dual, and a

generator matrix for a code is a parity check matrix for its dual. This also gives

dim(C⊥) = n− dim(C).
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Example 2.0.1. Consider the [3, 2]2 linear code C given by:

C = {000, 011, 110, 101}.

We see that dmin(C) = 2, since that is the smallest weight of a nonzero codeword, and

we have dim(C) = 2. A generator matrix for C is given by

G =

1 1 0

0 1 1

 ,
since every element in C is given by a linear combination of the rows of G. Addition-

ally, a parity check matrix for C is given by

H =

[
1 1 1

]
.

We see that for 101 ∈ C, we have

H(1, 0, 1)T =

[
1 1 1

]
·


1

0

1

 = 1 + 0 + 1 = 0.

2

2.1 LDPC Codes

Gallager introduced low density parity check (LDPC) codes in [10]. An LDPC code

is a code that has a sparse parity check matrix representation. Typically, a family

of LDPC codes will have a small constant row weight. These codes work well with

graph-based iterative decoding algorithms, which allow for the correction of trans-
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mitted errors in a relatively short amount of time. Moderate density parity check

(MDPC) codes are similarly characterized by a moderately dense parity check matrix

and have been explored particularly for cryptographic applications [1]. In this case,

families have row weights that scale in O(
√
n log n) but do not work quite as well with

iterative decoding algorithms. LDPC codes are well suited for graph-based decoding

due to their sparse representations as Tanner graphs [33]. The complexity for these

algorithms is linear in the number of edges [14].

Definition 2.1.1. The Tanner graph of a linear code C from a parity check matrix

H is the bipartite graph G = (V,W ;E) for which H is the adjacency matrix. The

vertices W corresponding to the rows of H are called check nodes, and the vertices V

corresponding to the columns of H are called variable nodes. There is an edge (v, w)

if and only if the (w, v) entry of H, denoted hw,v, is nonzero. For non-binary codes,

the edge (v, w) has weight hw,v.

Example 2.1.2. Consider the code C over F2 given by the parity check matrix

H =


1 1 0 0

1 0 1 1

0 1 0 1

 .

We can construct the corresponding Tanner graph in Figure 2.1, where the variable

nodes are represented by circles and the check nodes are represented by squares.
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1

v1

v2

v3

v4

c1

c2

c3

Figure 2.1: A Tanner graph for a linear code of length 4 with 3 check nodes

We see that 1101 ∈ C, since

H(1, 1, 0, 1)T =


1 1 0 0

1 0 1 1

0 1 0 1

 ·



1

1

0

1


=


0

0

0

 .

We can also see that this is a codeword by considering the Tanner graph. Here,

we view the codeword coordinates as values for the variable nodes and add the values

adjacent to each check node. In this case, as shown in Figure 2.2, each check node

has a sum of 0 and so is satisfied. Thus, 1101 ∈ C.

1

1

1

0

1

1 + 1 = 0

1 + 0 + 1 = 0

1 + 1 = 0

Figure 2.2: Using a Tanner graph to verify a codeword
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Similarly, we see that 0011 ̸∈ C, since

H(0, 0, 1, 1)T ̸=


0

0

0

 .

In the Tanner graph, we find values as in Figure 2.3. Since there is at least one

check node that does not add to 0, it is not satisfied, and so 0011 ̸∈ C. 2

1

0

0

1

1

0 + 0 = 0

0 + 1 + 1 = 0

0 + 1 = 1

Figure 2.3: Using a Tanner graph to verify a non-codeword

A parity check matrix is (j, ℓ)-regular if each row has weight j and each column

has weight ℓ. This implies that in the corresponding Tanner graph, each variable

node has degree j and each check node has degree ℓ.

Various decoding algorithms make use of Tanner graph representations, and dif-

ferent properties of these graphs can improve the performance of these algorithms.

For example, the degree distribution of a graph is related to the decoding threshold,

which characterizes the worst channel on which a decoder can operate [5].

Additionally, we can consider the girth of a graph, which is the length of the

smallest cycle in the graph. For example, for the graph in Figure 2.1, the girth is 6,

since the smallest cycle is given by the edges connecting vertices v1, c1, v2, c3, v4, and c2.

Graph-based iterative decoding algorithms, such as maximum-likelihood soft-decision

decoding, work best on codes with a cycle-free Tanner graph, because different parts
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of the message remain independent for more iterations. However, Etzion showed in

[7] that codes with cycle-free Tanner graphs have poor distance in relation to the rate.

Thus, in order to have good decoding properties while maintaining other good code

parameters, it is desirable that codes have Tanner graph representations with large

girth, e.g. [6, 16, 29].

Another graph structure that affects decoding is the presence of stopping sets.

A stopping set of a Tanner graph is a set of variable nodes S ⊆ V for which each

check node neighbor of S in W has at least two neighbors in S. For example, the

set S = {v1, v2, v4} is a stopping set of the graph in Figure 2.1, because each of the

check node neighbors of some element of this set, c1, c2, and c3, has at least two

neighbors in S. However, the set S = {v3, v4} is not a stopping set, because c3 only

has one neighbor in S. The stopping distance of a code with a particular Tanner

graph representation is the size of a minimum stopping set in the Tanner graph. In

Example 2.1.2, the stopping distance of C with the Tanner graph representation in

Figure 2.1 is 3, because for any set of one or two variable nodes, there is some check

node neighbor that only has one neighbor in the set of variable nodes. However, we

found a stopping set of size 3, so the stopping distance is 3. When decoding from

the erasure channel, where errors are given by the erasure of data in the message,

stopping sets can prevent successful decoding. If each variable node in a stopping

set is erased in a message, the check node neighbors cannot be used to determine

what the missing variable node values should be. Thus, small stopping sets can be

problematic, and so a large stopping distance is desirable for a code.

2.1.1 Graph lifts

To construct LDPC codes, we need sparse bipartite graphs, and long codes require

large vertex sets. Constructing a lift of a graph is one way to obtain graphs that can



11

be used for LDPC codes. In the literature, such graphs are called protograph codes

[36] or codes based on voltage graphs [15].

Let G = (V,E) be a directed graph. To obtain a degree ℓ lift of the base graph G,

label each edge e of G with a permutation σe ∈ Sℓ, the symmetric group on ℓ elements.

Then the corresponding degree ℓ lift of G, denoted Ĝ = (V̂ , Ê) is constructed by

replacing each v ∈ V with ℓ vertices {v1, . . . , vℓ} in V̂ , and the edges in Ê are given

by (vi, wσe(i)) where e = (v, w) ∈ E. Such a lift of a graph is also known as a

permutation voltage graph in [13]. Lifts are particularly helpful for constructing

graph-based codes, because they are locally like the base graph and so inherit a lot

of its properties, such as the degree distribution.

Example 2.1.3. Consider the directed graph G with edges labeled with a permutation

in S2, where ι = (1)(2), the identity permutation, and σ = (1 2), given in Figure 2.4.

v1

v2

v3

v4

σ σ

ι

ι σ

Figure 2.4: A directed graph G

Then the corresponding degree 2 lift of G is Ĝ, as shown in Figure 2.5. 2

When a Tanner graph is used as the base graph of a lift, all edges can be considered

as directed from a check node to a variable node. Recall that a permutation σ ∈ Sn

can be written as an n × n permutation matrix, where the (i, j) entry is equal to

1 if σ(j) = i and is 0 otherwise. In this case, the lifted graph is itself a Tanner
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v1,1 v1,2

v2,1 v2,2

v3,1 v3,2

v4,1 v4,2

Figure 2.5: The degree 2 lift Ĝ of graph G in Figure 2.4

graph, and the corresponding parity check matrix can be constructed from the original

parity check matrix by replacing each nonzero entry corresponding to edge e with the

permutation matrix corresponding to σe and replacing each zero entry with a zero

matrix.

Example 2.1.4. Consider the code C from Example 2.1.2. We assign permutations

to edges as follows using elements of S3, where ι = (1)(2)(3), the identity permutation:

c1v1 7→ ι, c2v1 7→ (1 2), c1v2 7→ (1 2 3), c3v2 7→ (1 3 2),

c2v3 7→ (1 3), c2v4 7→ (1 3), c3v4 7→ (1 2).

The result of the lift, Ĝ, is the Tanner graph corresponding to the parity check
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v1

v2

v3

v4

c1

c2

c3

v1,1

v2,1

v3,1

v4,1

c1,1

c2,1

c3,1

v1,2

v2,2

v3,2

v4,2

c1,2

c2,2

c3,2

v1,3

v2,3

v3,3

v4,3

c1,3

c2,3

c3,3

Figure 2.6: A Tanner graph G and a degree 3 lift Ĝ

matrix

H ′ =



1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 1 0 0 1 0

0 0 1 0 0 0 1 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 1



.

2

This motivates a definition for matrix lifts. A degree ℓ lift of a matrix M ∈

Fk×Nq is a matrix M̂ ∈ Fkℓ×Nℓq such that the ℓ × ℓ submatrix of M̂ given by rows

iℓ, iℓ+1, . . . , iℓ+ (ℓ− 1) and columns jℓ, jℓ+1, . . . , jℓ+ (ℓ− 1) has row and column
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weight equal to mi,j. In particular, if mi,j = 1, this submatrix is a permutation

matrix. For ease of notation, we call this submatrix M̂i,j.

2.2 Reproducible codes

In addition to lifting graphs to obtain long LDPC codes, large parity check matrices

can be obtained through other methods. In the McEliece cryptosystem, as mentioned

in Chapter 1, the primary difficulty with using the generator or parity check matrices

of codes as keys is that the matrices take too much data to store [1]. This gives

some motivation for compact representation of codes, and in response, Santini, et al.

introduced the idea of reproducible codes in [27].

A matrix A ∈ Fk×nq is said to be reproducible [27] if A can be entirely described by a

strict subset of its rows (called the signature set) and a family of linear transformations

on that subset. Similarly, a linear code C over Fq is reproducible [27] if it can be

represented by a reproducible generator or parity check matrix. One example of a

well-studied family of reproducible codes is cyclic codes.

Definition 2.2.1 (Cyclic Code). A linear code C is a cyclic code if every cyclic shift

of a codeword in C is also a codeword in C.

It is known that [n, k] cyclic codes have generator matrices given by taking a

particular codeword and k − 1 shifts of the codeword as rows. They also have parity

check matrices constructed similarly. Since we can describe the generator or parity

check matrix of a cyclic code using a single row and the family of shift permutations,

these are reproducible codes.
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Example 2.2.2. Consider the binary cyclic code C generated by

G =



1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1


.

This matrix is reproducible, since it can be described as the signature row

a = (1, 1, 0, 1, 0, 0, 0) with linear transformations given by M , M2, and M3, where

M =



0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0



.

Alternatively, the rows of G are given by the vectors a, MaT , M2aT , and M3aT .

Thus, the code is also reproducible. 2

Generally, more structured codes, such as reproducible codes, have worse perfor-

mance than codes that are closer to random. The condition of reproducibility quickly

leads to a less structured generalization of quasi-reproducible matrices and codes. A

matrix A ∈ Fk×nq is said to be quasi-reproducible [27] if A is an array of reproducible

matrices Ai,j. A linear code C over Fq is quasi-reproducible [27] if it can be repre-

sented by a quasi-reproducible generator or parity check matrix. Again, we find a

well-studied family of quasi-reproducible codes in quasi-cyclic codes.
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Definition 2.2.3 (Quasi-Cyclic Code). A code C is ℓ-quasi-cyclic if shifting any

codeword by ℓ symbol positions yields another codeword.

In this case, we can consider the generator matrix of a quasi-cyclic matrix as an

array of generator matrices for cyclic codes, and thus are quasi-reproducible, as shown

in Example 2.2.4.

Example 2.2.4. Consider the 3-quasi-cyclic code C generated by

G =



0 0 1 1 0 0 0 1 0 1 1 0 1 1 0

1 1 0 0 0 1 1 0 0 0 1 0 1 1 0

1 1 0 1 1 0 0 0 1 1 0 0 0 1 0

0 1 0 1 1 0 1 1 0 0 0 1 1 0 0

1 0 0 0 1 0 1 1 0 1 1 0 0 0 1


.

By permuting the columns, we obtain a generator matrix G′ for a permutation equiva-

lent code (i.e. the rows and columns of a generator matrix of one code can be permuted

to obtain a generator matrix for the other):

G′ =



0 1 0 1 1 0 0 1 1 1 1 0 0 0 0

1 0 1 0 1 1 0 0 1 1 0 1 0 0 0

1 1 0 1 0 1 1 0 0 1 0 0 1 0 0

0 1 1 0 1 1 1 1 0 0 0 0 0 1 0

1 0 1 1 0 0 1 1 1 0 0 0 0 0 1


.

Note that G′ is an array of cyclic matrices, which are each reproducible. Thus, G′

is a quasi-reproducible matrix. Since C is equivalent to a quasi-reproducible code, we

consider C to be a quasi-reproducible code. 2
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2.2.1 n-adic codes

Cyclic and quasi-cyclic codes have been studied extensively in [25, 26] and else-

where. In this dissertation, we will consider another family of reproducible and

quasi-reproducible codes, that formed by n-adic matrices. Dyadic (2-adic) matri-

ces have been considered in constructing codes for alternative implementations of the

McEliece cryptosystem in [21] and [24], the former of which was cryptanalyzed [9].

To establish some notation before giving the definition of n-adic matrices and

codes, note that we will be working with nℓ × nℓ matrices with rows and column

indexed by Zℓn. We equip Zℓn with a total order. Let [m] = {0, 1, . . . ,m − 1}, as

indices will begin with 0. The order on Zℓn is determined by the bijection

φ : Zℓn → [nℓ], a = (aℓ−1, · · · , a0) 7→ ã ≡ aℓ−1n
ℓ−1 + aℓ−2n

ℓ−2 + · · ·+ a0.

The order of an element a in the group Zℓn will be denoted by #⟨a⟩.

Definition 2.2.5 (n-adic Matrix). A matrix M ∈ Fnℓ×nℓ

q is called n-adic if ma,b =

m0,a+b for all a, b ∈ Zℓn and 0 ∈ Zℓn. For the special case of n = 2, the matrix is called

dyadic. The signature row of an n-adic matrix is its first row. We will write Ms for

the n-adic matrix with signature s. The weight of an n-adic matrix is the number of

nonzero elements in its signature row. When a matrix has weight 1, we will use the

notation Ma for Ms where si =


k i = a

0 i ̸= a.

for some nonzero k. (Any nonzero value

k will give the same results for those considered in this dissertation.)

Note that a similar definition is given in [3].

Example 2.2.6 (Dyadic Matrix). Let elements a, b, c, d form the signature row of a



18

4× 4 matrix, and label each row and column with its binary string representation.

(0, 0) (0, 1) (1, 0) (1, 1)


(0, 0) a b c d

(0, 1) m01,00 m01,01 m01,10 m01,11

(1, 0) m10,00 m10,01 m10,10 m10,11

(1, 1) m11,00 m11,01 m11,10 m11,11

We form a dyadic matrix as follows. By definition, we know m01,00 = m0,(0,1)+(0,0) =

m00,01 = b. Similarly, the values for mi,j for the remaining i, j can be determined by

the elements of the signature row. This yields the dyadic matrix

(0, 0) (0, 1) (1, 0) (1, 1)


(0, 0) a b c d

(0, 1) b a d c

(1, 0) c d a b

(1, 1) d c b a

.

Thus, a 4×4 dyadic matrix has the above form, where determining values for a, b, c, d

gives the entire matrix. 2

We see that n-adic matrices are reproducible, since we determine the matrix by

the signature row and a series of permutations of those elements. As in Example 2.2.6,

we can consider forming a triadic (3-adic) matrix with a signature row of weight 2 in

Example 2.2.7.

Example 2.2.7 (Triadic Matrix). The following is an example of a weight 2 triadic

matrix with rows and columns labeled with their ternary string representations:
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(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)



(0, 0) 1 0 0 0 0 0 0 0 1

(0, 1) 0 0 1 0 0 0 0 1 0

(0, 2) 0 1 0 0 0 0 1 0 0

(1, 0) 0 0 0 0 0 1 1 0 0

(1, 1) 0 0 0 0 1 0 0 0 1

(1, 2) 0 0 0 1 0 0 0 1 0

(2, 0) 0 0 1 1 0 0 0 0 0

(2, 1) 0 1 0 0 0 1 0 0 0

(2, 2) 1 0 0 0 1 0 0 0 0

2

We can obtain the quasi-reproducible generalization of n-adic matrices by consid-

ering quasi-n-adic matrices. A matrix is quasi-n-adic if it given by an array of n-adic

blocks. As with reproducible and quasi-reproducible codes, a code C is n-adic if it has

an n-adic generator or parity check matrix and quasi-n-adic if it has a quasi-n-adic

generator or parity check matrix. An n-adic array of matrices is an nℓ × nℓ array of

matrices [Ma,b]a,b∈Zℓ
n
such that Ma,b =M0,a+b for all a, b ∈ Zℓn.

For ease of notation, when referring to a row or column in a quasi-n-adic matrix,

we will give an ordered pair (a, b), where a represents the n-adic block in which the

row or column is found, indexed from 0, and b ∈ Zℓn represents the row or column

considered within the n-adic block.

Example 2.2.8. The following is a quasi-dyadic matrix, since it is a 2× 3 array of

4× 4 blocks, where each 4× 4 block is a dyadic matrix:
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D0,0 D0,1 D0,2

D1,0 D1,1 D1,2

 =



1 0 0 0 0 0 1 0 0 1 1 0

0 1 0 0 0 0 0 1 1 0 0 1

0 0 1 0 1 0 0 0 1 0 0 1

0 0 0 1 0 1 0 0 0 1 1 0

0 0 0 0 1 0 0 0 1 1∗ 0 0

0 0 0 0 0 1 0 0 1 1 0 0

0 0 0 0 0 0 1 0 0 0 1 1

0 0 0 0 0 0 0 1 0 0 1 1


In this example, D1,0 is a weight 0 dyadic matrix, D0,0, D0,1, and D1,1 are weight

1 dyadic matrices, and D0,2 and D1,2 are weight 2 dyadic matrices.

The second nonzero element of the signature row of D1,2, denoted with an asterisk

in the matrix above, can be described as being in row (1, (0, 0)) and column (2, (0, 1)).

2

In this dissertation, we will consider n-adic and quasi-n-adic codes that have n-

adic or quasi-n-adic parity check matrix representations.
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Chapter 3

Properties of n-adic matrices

We now consider some structural properties of n-adic and quasi-n-adic matrices to

better understand their potential for coding theory and other applications. We start

our analysis with an illustrative example that establishes a recursive structure of

n-adic matrices.

Example 3.0.1. Consider a general 8× 8 dyadic matrix:



a b c d e f g h

b a d c f e h g

c d a b g h e f

d c b a h g f e

e f g h a b c d

f e h g b a d c

g h e f c d a b

h g f e d c b a


This matrix can be written as a dyadic array of general 4× 4 dyadic matrices:
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a b c d e f g h

b a d c f e h g

c d a b g h e f

d c b a h g f e

e f g h a b c d

f e h g b a d c

g h e f c d a b

h g f e d c b a


Each of the 4× 4 dyadic matrices can be written as a dyadic array of 2× 2 dyadic

matrices: 

a b c d e f g h

b a d c f e h g

c d a b g h e f

d c b a h g f e

e f g h a b c d

f e h g b a d c

g h e f c d a b

h g f e d c b a


2

As Example 3.0.1 shows, a dyadic matrix can be written as a 2× 2 dyadic array

of dyadic matrices with smaller dimension. This property generalizes for all n-adic

matrices.

Theorem 3.0.2. A matrix M ∈ Fnℓ×nℓ

q is n-adic with ℓ ≥ 2 if and only if M can be

written as a n× n n-adic array of n-adic matrices in Fnℓ−1×nℓ−1

q .
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Proof. If a matrix M ∈ Fnℓ×nℓ

q is n-adic, then by definition, ma,b = m0,a+b for a =

(aℓ−1, . . . , a0), b = (bℓ−1, . . . , b0) ∈ Zℓn. Note that the first nℓ−1 rows of M have

aℓ−1 = 0, the second nℓ−1 rows have aℓ−1 = 1, and likewise through the last nℓ−1 rows

with aℓ−1 = n − 1. Similarly, we have values for bℓ−1 consistent over blocks of nℓ−1

columns.

Consider some such block of nℓ−1 rows and columns,M ′. We have constant values

aℓ−1 = r, bℓ−1 = c for each of the elements in M ′, and so for each ma,b in this block,

we know (a + b)ℓ−1 is the constant r + c. The remaining elements of (a + b) iterate

through values of Zℓ−1
n . Thus, we see for any ma,b in M

′, we have

ma,b = m0,a+b = m0,(r+c,aℓ−2+bℓ−2,...,a0+b0),

and there is a corresponding element in the first row of M ′ given by

m′
0,(aℓ−2+bℓ−2,...,a0+b0)

= m(r,0,...,0),(c,aℓ−2+bℓ−2,...,a0+b0)

= m0,(r,0,...,0)+(c,aℓ−2+bℓ−2,...,a0+b0)

= m0,(r+c,aℓ−2+bℓ−2,...,a0+b0).

Because these have the same value, M ′ is n-adic.

We also see that these n-adic blocks form an n-adic array. Values in the r, c block

are determined by elements m0,(r+c,aℓ−2+bℓ−2,...,a0+b0), which are the values in the r+ c

block of the first row. Thus, the blocks form an n-adic array.

Similarly, consider an n × n n-adic array of n-adic matrices in Fnℓ−1×nℓ−1

q , M =

[M ′
a,b]a,b∈Zn . Here, the ma,b element is in M ′

aℓ−1,bℓ−1
in row (aℓ−2, . . . , a0) and column
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(bℓ−2, . . . , b0). Thus, since M
′
aℓ−1,bℓ−1

is n-adic, we know

ma,b = m′
(aℓ−2,...,a0),(bℓ−2,...,b0)

= m′
0,(aℓ−2+bℓ−2,...,a0+b0)

= m(aℓ−1,0,...,0),(bℓ−1,aℓ−2+bℓ−2,...,a0+b0),

and since the array of matrices is n-adic, we knowM ′
aℓ−1,bℓ−1

is the same asM ′
0,(aℓ−1+bℓ−1)

.

Thus,

ma,b = m(aℓ−1,0,...,0),(bℓ−1,aℓ−2+bℓ−2,...,a0+b0) = m0,(aℓ−1+bℓ−1,aℓ−2+bℓ−2,...,a0+b0) = m0,a+b,

and so M is n-adic.

This recursive definition yields a simple characterization for when the lift of an

n-adic matrix is itself n-adic.

Corollary 3.0.3. A degree d lift M̂ of an n-adic matrix M ∈ Fnℓ×nℓ

q is also n-adic

if and only if each M̂a,b is n-adic and M̂a,b = M̂0,a+b for all a, b ∈ Zℓn.

Proof. Note that if M̂ andM are both n-adic, then they have dimensions nℓ+d×nℓ+d

and nℓ × nℓ, respectively, for some ℓ, d ∈ N. Also, if each M̂a,b is n-adic, then each

has dimension nd×nd for some d. Then, sinceM is n-adic with dimension nℓ×nℓ for

some ℓ, M̂ will have dimension nℓ+d × nℓ+d. Thus, each matrix has the appropriate

dimensions to be n-adic.

From Theorem 3.0.2, we know that M̂ is n-adic if and only if M̂ is an n×n n-adic

array of n-adic matrices. Applying this theorem ℓ times gives us that M̂ is n-adic if

and only if M̂ is an nℓ × nℓ n-adic array of nd × nd n-adic matrices, which gives us

the conclusion.
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From the definition of n-adic matrices, it immediately follows that n-adic matrices

over a field are symmetric, since for an n-adic matrix M , ma,b = m0,a+b = m0,b+a =

mb,a. Additionally, Santini et al. demonstrated that dyadic matrices over a field form

a commutative ring [28]. We show that for other values of n, while the matrices form

an abelian group under addition, the set of n-adic matrices is neither closed under

multiplication nor commutative.

Theorem 3.0.4. For all n ≥ 3 and all ℓ ≥ 1, the set of n-adic matrices of dimen-

sion nℓ × nℓ over a field F is neither closed under multiplication nor commutative.

Additionally, Inℓ is not n-adic for n ≥ 3 and ℓ ≥ 1.

Proof. First, we claim that the anti-diagonal matrix with all 1’s on the anti-diagonal,

D, is an n-adic matrix. Since we know from Theorem 3.0.2 that n-adic matrices of

dimension nℓ × nℓ are given by an n-adic matrix of dimension n × n with entries

n-adic matrices of dimension nℓ−1×nℓ−1, it suffices to show that this holds for ℓ = 1.

For larger values of ℓ, we can make an n-adic array of n-adic matrices by replacing

each nonzero entry of D with another copy of D, yielding the anti-diagonal matrix

for the next size of n-adic matrices. For elements da,b along the anti-diagonal, we

have a + b = n − 1, so each of these entries is equal to d0,n−1, and thus, this matrix

is n-adic.

We know that given any matrix M , MD is given by reversing the order of the

columns ofM and DM is given by reversing the order of the rows ofM . In particular,

we know that D2 = Inℓ . Note that Inℓ is not n-adic for n ≥ 3, since the first row

only has one nonzero entry, which occurs in the first column, but the second row

has a nonzero entry in the second column. This gives i(0,...,0,1),(0,...,0,1) = 1 ̸= 0 =

i0,(0,...,0,2) = i0,(0,...,0,1)+(0,...,0,1). Thus, the set of n-adic matrices for n ≥ 3 is not closed

under multiplication, and Inℓ is not n-adic.
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Since D is an n-adic matrix, it remains to show that there is an n-adic matrix for

which reversing the rows and reversing the columns results in two different matrices.

ConsiderM to be the n-adic permutation matrix with signature row (1, 0, . . . , 0). We

see that the only corner of M which has a nonzero element is M0,0, since n ≥ 3, and

so (n−1)+(n−1) ̸= 0 as elements of Zn. Thus, the only nonzero corner of MD is in

the first row and final column, but the only nonzero corner of DM is in the final row

and first column, and so MD ̸= DM . Thus, the set of n-adic matrices of dimension

nℓ × nℓ over F is not commutative for all n ≥ 3.

3.1 Dyadic matrices

As shown in Theorem 3.0.4, n-adic matrices are generally neither commutative nor

closed under multiplication. However, since dyadic matrices fulfill these conditions

and form a commutative ring, we consider properties of the ring of dyadic matrices.

Smarandache and Vontobel give an upper bound for the minimum distance of quasi-

cyclic codes in [30] by considering an isomorphism between the ring of cyclic matrices

over F and a polynomial ring. We consider a similar isomorphism between the ring

of dyadic matrices over F and another polynomial ring.

Theorem 3.1.1. The ring of 2ℓ × 2ℓ dyadic matrices over F is isomorphic to

F[x0, . . . , xℓ−1]/⟨x20 − 1, x21 − 1, . . . , x2ℓ−1 − 1⟩.

Proof. Any dyadic matrix M ∈ F2ℓ×2ℓ can be represented by its signature row

(ma)a∈Zℓ
2
. Consider the function ϕ from the ring of dyadic matrices (represented
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by their signature rows) in F2ℓ×2ℓ to F[x0, . . . , xℓ−1]/⟨x20 − 1, . . . , x2ℓ−1 − 1⟩ given by

ϕ
(
(ma)a∈Zℓ

2

)
=

∑
a∈Zℓ

2

max
a0
0 · · ·xaℓ−1

ℓ−1 .

We will show that this function is an isomorphism of rings.

First, since the identity matrix is dyadic with signature row (1, 0, . . . , 0), we have

ϕ(I2ℓ) = ϕ(1, 0, . . . , 0) = 1. Additionally, for dyadic matrices M and W , the matrix

M +W is also dyadic with signature row (ma + wa)a∈Zℓ
2
. Thus,

ϕ(M +W ) =
∑
a∈Zℓ

2

(ma + wa)x
a0
0 · · ·xaℓ−1

ℓ−1

=
∑
a∈Zℓ

2

max
a0
0 · · ·xaℓ−1

ℓ−1 +
∑
a∈Zℓ

2

wax
a0
0 · · ·xaℓ−1

ℓ−1

= ϕ(M) + ϕ(W ).

Moreover, the a, b entry of Z := MW is given by
∑

c∈Zℓ
2
ma,cwc,b. Since both M

and W are dyadic matrices, we have

za,b =
∑
c∈Zℓ

2

ma,cwc,b

=
∑
c∈Zℓ

2

m0,a+cw0,c+b

=
∑
c∈Zℓ

2

m0,cw0,c+a+b by reindexing

=
∑
c∈Zℓ

2

m0,cwc,a+b

= z0,a+b.
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Thus, MW is a dyadic matrix with signature row
(∑

b∈Zℓ
2
mbwa+b

)
a∈Zℓ

2

. This gives

ϕ(MW ) =
∑
a∈Zℓ

2

∑
b∈Zℓ

2

mbwa+b

xa00 · · ·xaℓ−1

ℓ−1

=

∑
a∈Zℓ

2

max
a0
0 · · ·xaℓ−1

ℓ−1

∑
a∈Zℓ

2

wax
a0
0 · · ·xaℓ−1

ℓ−1


by factoring and reindexing

= ϕ(M)ϕ(W ).

So ϕ is a ring homomorphism.

Next, we want to show ϕ is an isomorphism. Given (ma)a∈Zℓ
2
∈ kerϕ, we know

∑
a∈Zℓ

2

max
a0
0 · · ·xaℓ−1

ℓ−1 = 0,

and so ma = 0 for all a. Thus, ϕ is injective. We also see that any element of

F[x0, . . . , xℓ−1]/⟨x20 − 1, . . . , x2ℓ−1 − 1⟩

can be written as
∑

a∈Zℓ
2
max

a0
0 · · ·xaℓ−1

ℓ−1 for some (ma)a∈Zℓ
2
and so equals ϕ

(
(ma)a∈Zℓ

2

)
.

Thus, ϕ is surjective.

Note that as n-adic matrices are not closed under multiplication for n ≥ 3, this

isomorphism does not generalize to n-adic matrices. The proof of Theorem 3.1.1 fails

to generalize particularly at the point where Z := MW is shown to be dyadic. We

conclude this chapter with an observation of the square of a dyadic matrix.
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Theorem 3.1.2. For a dyadic matrix M over F2, either M2 = 0 if M has even

weight or M2 = I if M has odd weight.

Proof. First, note that M =MT , since M is a dyadic matrix. Thus, we will consider

the dot product of rows i and j of M in both cases to give the i, j entry of M2.

Let mi represent row i of M . If M has weight k and a1, . . . , ak are the positions of

the nonzero signature row entries of M , we know mi has nonzero entries in columns

a1 + i, . . . , ak + i and mj has nonzero entries in columns a1 + j, . . . , ak + j.

If i = j, we see mi ·mj = mi ·mi = k. Thus, if k is even, mi ·mj = 0, and if k is

odd, mi ·mj = 1.

If i ̸= j and there are some i′, j′ such that ai′ + i = aj′ + j, note that we also have

aj′ + i = ai′ + j. Thus, we have pairs of entries that are nonzero in both rows mi and

mj, and so mi ·mj = 0. If there is no i′, j′ such that ai′ + i = aj′ + j, then the dot

product is again 0.

Thus, the claim holds.
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Chapter 4

Dual and dimension of dyadic codes

The dimension of a code is a fundamental parameter and is used to calculate the rate

and other code parameters, as well. Thus, it is natural to consider the dimension

of dyadic codes. In this chapter, we will consider codes with dyadic parity check

matrices, along with their duals. As a result, the codes will have length n = 2ℓ. By

Corollary 3.1.2, dyadic matrices with signatures of odd weight are invertible, and so

we will consider only matrices with signatures of even weight. For a dyadic matrix

Mv, we will denote Cv the linear code with parity check matrix Mv.

We begin by showing that a code with a dyadic parity check matrix of even weight

contains its dual, which then has implications for the dimension of the code.

Theorem 4.0.1. Let Mv be a dyadic matrix where v has even weight, and consider

the linear code Cv with parity check matrix Mv. Then Cv is dual-containing, that is,

C⊥
v ⊆ Cv. As a consequence, dim(Cv) ≥ n/2 = 2ℓ−1.

Proof. Since Mv is a parity check matrix for Cv, it is a generator matrix for C⊥
v .

Thus, Cv is dual-containing if and only if MvM
T
v = 0, since this would imply that

every row in the generator matrix of C⊥
v is also in Cv. Since Mv is a dyadic matrix

with even weight, by Corollary 3.1.2, we have MvM
T
v = M2

v = 0, and thus C⊥
v ⊆ Cv.

Because dim(C⊥) = n − dim(C) for any length n linear code C, we also see n =
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dim(Cv) + dim(C⊥
v ) ≤ 2 dim(Cv), and so dim(Cv) ≥ n/2 = 2ℓ−1.

Along with the lower bound of the dimension of the code, the fact that these codes

are dual-containing give results on the distance of the code, as well as a condition for

when the dual also has a dyadic parity check matrix.

Corollary 4.0.2. Let Mv be a dyadic matrix where v has even weight, and consider

the linear code Cv with parity check matrix Mv. Then dmin(Cv) ≤ wt(v).

Proof. Note that v ∈ C⊥
v , since v is the first row of Mv. Since C⊥

v ⊆ Cv by Theo-

rem 4.0.1, we know v ∈ Cv, and so dmin(Cv) ≤ wt(v).

Corollary 4.0.3. Let Mv be a dyadic matrix where v has even weight, and consider

the linear code Cv with parity check matrix Mv. Then C⊥
v has a dyadic parity check

matrix if and only if C⊥
v = Cv.

Proof. By Theorem 4.0.1, we know C⊥
v ⊆ Cv, so dim(C⊥

v ) ≤ dim(Cv). Additionally,

if C⊥
v has a dyadic parity check matrix, it is also dual-containing, and so Cv ⊆ C⊥

v .

Thus, dim(Cv) ≤ dim(C⊥
v ), and so dim(Cv) = dim(C⊥

v ). Therefore, Cv = C⊥
v . The

converse is trivial.

As we will consider later in this chapter, dual-containing classical codes can be

used to construct quantum codes. Before that, we consider the case of self-dual codes,

that is, C⊥ = C.

Theorem 4.0.4. Consider the dyadic matrix

Mv =

Mu Mw

Mw Mu

 .
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If the signatures u and w both have odd weight, then the corresponding dyadic code

Cv is self-dual.

Proof. By Corollary 3.1.2, we have that M2
u = M2

w = I and both Mu and Mw are

invertible. Thus, multiplying Mv with the invertible matrix below does not change

its rank: Mu 0

Mu Mw

 ·

Mu Mw

Mw Mu

 =

 M2
u MuMw

M2
u +M2

w MuMw +MwMu


=

I MuMw

0 2MuMw


=

I MuMw

0 0

 .
Considering the last matrix, we see this product has rank n/2 and thus the code Cv

is self-dual by Theorem 4.0.1.

With the structure of dyadic matrices, there is a relation between splitting the

signature row into the first and second halves and splitting the signature row into the

first and third quarters, as well as the second and fourth quarters. In particular, row

and column permutations can be applied to a dyadic matrix to swap the second and

third quarters of the signature and yielding another dyadic matrix. This is described

in Thoerem 4.0.5.

Theorem 4.0.5. If M is a 2ℓ × 2ℓ dyadic matrix with even weight and nonzero

signature row entries a1 = (a1,ℓ−1, . . . , a1,0), . . . , ak = (ak,ℓ−1, . . . , ak,0) such that there

is some i such that #{aj|aj,i = 1} is odd, then M can be transformed by permuting
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rows and columns to form another dyadic matrix M ′ =

Mu Mw

Mw Mu

 with dyadic

submatrices Mu and Mw with the weights of signature rows u and w both odd.

Proof. Let M be a 2ℓ × 2ℓ dyadic matrix as above, and let b be some index such

that #{aj|aj,b = 1} is odd. Note that for some a ∈ Zℓ2, for the corresponding integer

ã = aℓ−1n
ℓ−1 + aℓ−2n

ℓ−2 + · · · + a0, we have that ã ∈ [2ℓ−1], i.e. a is in the first half

of the signature row, if and only if aℓ−1 = 0. Thus, if b = ℓ − 1, M is already of

the form M =

Mu Mw

Mw Mu

 with dyadic submatrices Mu and Mw with the weights of

signature rows u and w both odd.

If b ̸= ℓ − 1, we can construct M ′ by swapping pairs of rows and columns j, ϕ(j)

of M , where j ∈ Zℓ2 and ϕ : Zℓ2 → Zℓ2 is given by

ϕ((ji)i∈[ℓ]) = (j′i)i∈[ℓ] such that j′i =


jb if i = ℓ− 1

jℓ−1 if i = b

ji otherwise

.

Note that ϕ2 = id, and so ϕ gives a permutation of the rows and columns of M to

obtain M ′, as well as for M ′ to obtain M . We see that M ′ is a dyadic matrix, since

M ′
i,j =Mϕ(i),ϕ(j) =M0,ϕ(i)+ϕ(j) =M ′

ϕ(0),ϕ(ϕ(i)+ϕ(j)), by applying ϕ and recalling that M

is a dyadic matrix. Note that ϕ(0) = 0 and ϕ(i+j) = ϕ(i)+ϕ(j). Thus,M ′
i,j =M ′

0,i+j,

and so M ′ is a dyadic matrix. Note that M ′ now has signature row entries a′j such

that #{a′j|aj,ℓ−1 = 1} is odd. Thus, M ′ can be written as M ′ =

Mu Mw

Mw Mu

 with

dyadic submatrices Mu and Mw with the weights of signature rows u and w both

odd.
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This result gives the following reformulation of Theorem 4.0.4 and a generalization.

Corollary 4.0.6. If M is a 2ℓ×2ℓ dyadic matrix with even weight and nonzero signa-

ture row entries a1 = (a1,ℓ−1, . . . , a1,0), . . . , ak = (ak,ℓ−1, . . . , ak,0) such that #{aj|aj,ℓ−1 =

1} is odd, then the dyadic code C with parity check matrix M is self-dual.

Theorem 4.0.7. If M is a 2ℓ × 2ℓ dyadic matrix with even weight and nonzero

signature row entries a1 = (a1,ℓ−1, . . . , a1,0), . . . , ak = (ak,ℓ−1, . . . , ak,0) such that there

is some i such that #{aj|aj,i = 1} is odd, then the dyadic code C with parity check

matrix M is self-dual.

Proof. By Theorem 4.0.5, M ′ can be obtained from M from permuting rows and

columns so that M ′ =

Mu Mw

Mw Mu

 with dyadic submatrices Mu and Mw with the

weights of signature rows u and w both odd. By Corollary 4.0.6, the dyadic code

corresponding to M ′ is self-dual. Since M ′ is obtained from permuting rows and

columns of M , they have the same rank, and the result follows.

4.1 Dyadic quantum codes

Quantum coding theory uses qubits as fundamental units of information. These are

elements of C2 written as |ψ⟩ = α|0⟩+β|1⟩, where α, β ∈ C such that |α|2+ |β|2 = 1,

and

|0⟩ =

1
0

 and |1⟩ =

0
1


are orthonormal basis vectors. Additional qubits are given by taking tensor products

of qubits. For example, two-qubit states are given by |ψ⟩ = α|00⟩ + β|01⟩ + γ|10⟩ +



35

δ|11⟩, where |α|2 + |β|2 + |γ|2 + |δ|2 = 1 and

|00⟩ = |0⟩ ⊗ |0⟩ =



1

0

0

0


, |01⟩ = |0⟩ ⊗ |1⟩ =



0

1

0

0


,

|10⟩ = |1⟩ ⊗ |0⟩ =



0

0

1

0


, |11⟩ = |1⟩ ⊗ |1⟩ =



0

0

0

1


.

The fundamental linear transformations on a single qubit are given by the four Pauli

matrices:

I =

1 0

0 1

 , X =

0 1

1 0

 , Y = iXZ =

0 −i

i 0

 , and Z =

1 0

0 −1

 .
The Pauli group consists of these matrices and their multiplicative factors: G =

{±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}. This is then extended to the Pauli group

Gn on n qubits by taking n-fold tensor products of matrices in this group.

In [22], Nielsen and Chuang note that rather than describing a quantum state as

a vector in C2n, one can describe it by the operators that stabilize it. It turns out

that this is often easier than describing the state itself. For example, the quantum
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state

|ψ⟩ = |00⟩+ |11⟩√
2

=



√
2/2

0

0
√
2/2


is stabilized by the operators

XX =



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


and ZZ =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


,

since XX|ψ⟩ = |ψ⟩ and ZZ|ψ⟩ = |ψ⟩. It is harder to see but still true that |ψ⟩ is

the unique quantum state (up to phase shift, which is given by multiplication by a

constant) stabilized by these operators [22].

Gottesman introduced stabilizer codes in [11]. A stabilizer group S is an abelian

subgroup of Gn that does not contain −I, and the corresponding stabilizer code C(S)

is given by

C(S) := {|ψ⟩ : S|ψ⟩ = |ψ⟩ ∀S ∈ S}[11].

A stabilizer group S ⊆ Gn with k independent generators can be represented by the

k × 2n check matrix HS = (HX |HZ) over F2, where for each row corresponding to a

generator, the ith entry of HX is 1 if the generator has an X in the ith position and

the ith entry of HZ is 1 if the generator has a Z in the ith position. In this case, a Y in

the generator is indicaded by 1’s in both HX and HZ . A [[n, k, d]] stabilizer code has

length n, dimension k, and minimum distance d. For more information on quantum

codes, we refer the reader to [22].
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Example 4.1.1. The five qubit [[5,1,3]] stabilizer code, which is the smallest code

capable of correcting any error in a single qubit, is given by the following stabilizer

group [22]:

S = ⟨XZZXI, IXZZX,XIXZZ,ZXIXZ⟩

We can write the corresponding check matrix

HS = [HX |HZ ] =



1 0 0 1 0 0 1 1 0 0

0 1 0 0 1 0 0 1 1 0

1 0 1 0 0 0 0 0 1 1

0 1 0 1 0 1 0 0 0 1


.

Note that the first generator, XZZXI, has an X in the first and fourth positions

and a Z in the second and third positions. This corresponds to the first row in the

check matrix, where the first and fourth positions of HX are 1 and the second and third

positions of HZ are 1. The remaining rows are found similarly from the remaining

generators. 2

The commutivity of the stabilizers of S is equivalent to self-orthogonality of HS

with respect to the symplectic inner product, which is given by h⊙ g := hXg
T
Z +hZg

T
X

for vectors h = (hX , hZ), g = (gX , gZ). Thus, we must have some matrix HS such

that HS ⊙HS = HXH
T
Z +HZH

T
X = 0. Because dyadic matrices are commutative and

symmetric, choosing dyadic HX and HZ over F2 satisfies this condition immediately,

which makes dyadic matrices candidates to consider in the construction of check

matrices for stabilizer codes. Additionally, since a dyadic matrix can be written as a

dyadic array of dyadic matrices by Theorem 3.0.2, if we have a dyadic matrix H of
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even weight over F2, we have

H =

M1 M2

M2 M1


for dyadic matrices M1 and M2 of the same parity weight. This gives

H ⊙H =

M1

M2

 ·
[
M2 M1

]
+

M2

M1

 ·
[
M1 M2

]

=

M1M2 M2
1

M2
2 M2M1

+

M2M1 M2
2

M2
1 M1M2


=

0 0

0 0

 .
The last equation holds by applying Theorem 3.1.2 and recalling that dyadic matrices

commute. Thus, we can also use dyadic matrices of even weight as check matrices for

stabilizer codes.

When HX and HZ are sparse, they define a quantum LDPC (QLDPC) code. The

minimum distance of a stabilizer code C(S) is found by taking the minimum weight of

an operator which commutes with all operators in S but is not in S. Equivalently, it is

the minimum quantum weight of a codeword in C(S)\C(S)⊥. We can find codewords

of C(S) using a generator or check matrix as in a classical code. To calculate the

quantum weight (or symplectic weight) of a codeword in a stabilizer code, we first

note that the code always has even length. Thus, we can consider the first half and

the second half of a codeword: c = (x, z). We then find the number of indices such

that xi = 1 or zi = 1. This gives us the weight of a codeword, and the minimum

distance of a code is found by taking the minimum of this weight over codewords in

C(S) \ C(S)⊥. If C(S) is self-dual, the minimum is found over nonzero codewords of
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C(S).

Example 4.1.2. Consider M the following 16× 16 dyadic matrix with signature row

weight 4 and support {0, 1, 11, 15}:

M =



11000000 00010001

11000000 00100010

00110000 01000100

00110000 10001000

00001100 00010001

00001100 00100010

00000011 01000100

00000011 10001000

00010001 11000000

00100010 11000000

01000100 00110000

10001000 00110000

00010001 00001100

00100010 00001100

01000100 00000011

10001000 00000011


This matrix has rank 8 and is self-dual by Theorem 4.0.7. Thus, it yields an [[8, 0]]
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stabilizer code. After row-reduction, the generator matrix of the stabilizer is

G =



10000100 00010010

01000100 00000011

00100001 01001000

00010001 00001100

00001100 00010001

00000011 01000100

00000000 11001100

00000000 00110011


Consider the codeword c = (1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1) found by adding the

first three rows of G. We can calculate the quantum weight of c by splitting c into

x = (1, 1, 1, 0, 0, 0, 0, 1) and z = (0, 1, 0, 1, 1, 0, 0, 1). Indexing from 0, we have xi = 1

or zi = 1 for i ∈ {0, 1, 2, 3, 4, 7}. Thus, the quantum weight of c is 6.

In Magma, we calculated the minimum quantum weight of nonzero codewords to

find that this stabilizer code has minimum distance 4. This is the largest possible

minimum distance for a stabilizer code with length 8 and dimension 0, and it is not

equivalent with the self-dual cyclic [[8, 0, 4]] code given in [12]. 2

The self-orthogonality condition for the construction of a stabilizer code can be

difficult to satisfy, so we also consider the Calderbank-Shor-Steane (CSS) construction

[4, 32]. This gives a method for constructing a self-orthogonal code from two other

codes, which can then be used as a stabilizer code.

In the CSS construction of a stabilizer code, we consider two matrices HX and
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HZ such that HZH
T
X = 0. This ensures that the matrix

H =

HX 0

0 HZ


satisfies the conditions for a stabilizer code. In this case, to compute the minimum

distance of the stabilizer code as above, we can take the minimum Hamming weight

of a codeword in (CX \ C⊥
Z )∪ (CZ \ C⊥

X), where CX and CZ are the classical codes with

parity check matrices HX and HZ , respectively. Because dyadic parity check codes

contain their duals, if one uses CX = CZ = C, where C is a dyadic parity check code,

this reduces to finding the minimum Hamming weight over C \ C⊥.

If we begin with some dyadic parity check matrix HX , we can find a dyadic parity

check matrix HZ such that HZH
T
X = 0 by taking a codeword of CX as the signature

row for HZ . Thus, we can use dyadic matrices to give stabilizer codes in the CSS

construction, as well, as is shown in Example 4.1.3.

Example 4.1.3. Consider M a 32 × 32 dyadic matrix with signature row weight 4,

where the nonzero elements of the signature row are in positions 9, 14, 17, and 18

(entries indexed from 0 to 31). As noted above, we can construct a second dyadic

matrix using M as the parity-check matrix for a code. From Magma, we found a

random codeword, which had weight 12 with nonzero entries in positions 8, 9, 11,

14, 17, 18, 19, 20, 25, 26, 29, and 30. If M ′ is the dyadic matrix which uses this

codeword as its signature row, we see that we can use

H =

M 0

0 M ′


as a parity check matrix for a QLDPC code. From calculations in Magma, the quan-
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tum distance for this code is 4. 2

Taking into account various bounds for quantum codes, the stabilizer code in Ex-

ample 4.1.2 has the largest possible minimum distance given its length and dimension

[12]. It remains to be seen whether dyadic constructons of quantum codes, whether di-

rectly as check matrices for stabilizer codes or used in the CSS construction, continue

to maximize parameters for greater lengths and dimensions.
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Chapter 5

Minimum distance of n-adic and quasi-n-adic codes

As shown in Corollary 4.0.2, the minimum distance of a code with dyadic parity check

matrix with even signature row weight has minimum distance at most that weight. In

this chapter, we derive upper bounds on the minimum distance for quasi-dyadic and

quasi-n-adic codes. We will continue to consider n-adic and quasi-n-adic matrices as

parity check matrices for codes.

5.1 Minimum distance bound for quasi-dyadic codes

Smarandache and Vontobel give an upper bound for the minimum distance of quasi-

cyclic codes in [30] by considering an isomorphism between the ring of cyclic matrices

over F and a polynomial ring. We will use the analogous isomorphism in Theo-

rem 3.1.1 to establish an analogous upper bound. Since n-adic matrices for n ≥ 3 are

neither closed under multiplication nor commutative, this method does not generalize

to n-adic matrices.

For ease of notation, we define

F{ℓ} := F[x0, . . . , xℓ−1]/⟨x20 − 1, x21 − 1, . . . , x2ℓ−1 − 1⟩.

In this ring, we define the weight of a polynomial wt(c(x)) to be the number of
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nonzero terms of the polynomial. From this isomorphism, we can consider a relation

between quasi-dyadic codes and codes over F{ℓ}.

Theorem 5.1.1. Given a quasi-dyadic code C over F with parity check matrix

H =



H0,0 H0,1 · · · H0,J−1

H1,0 H1,1 · · · H1,J−1

...
...

. . .
...

HI−1,0 HI−1,1 · · · HI−1,J−1


(where each Hi,j is an 2ℓ × 2ℓ dyadic matrix over F), we can consider an associated

code C ′ over F{ℓ} with polynomial parity check matrix

H(x) =



h0,0(x) h0,1(x) · · · h0,J−1(x)

h1,0(x) h1,1(x) · · · h1,J−1(x)

...
...

. . .
...

hI−1,0(x) hI−1,1(x) · · · hI−1,J−1(x)


(where hi,j(x) = ϕ(Hi,j) as defined in Theorem 3.1.1).

Given a vector c =
(
(cj,a)a∈Zℓ

2

)J−1

j=0
∈ F(2ℓ)J , we have an associated polynomial

vector c(x) = (c0(x), . . . , cJ−1(x)) ∈ F{ℓ}J , where cj(x) =
∑

a∈Zℓ
2
cj,ax

a0
0 · · · xaℓ−1

ℓ−1 .

Then

HcT = 0T if and only if H(x)c(x)T = 0T .

Proof. Let cj := (cj,a)a∈Zℓ
2
. We see that HcT = 0T if and only if

∑J−1
j=0 Hi,jc

T
j = 0T

for all i ∈ [I]. Similarly, H(x)c(x)T = 0T if and only if
∑J−1

j=0 hi,j(x)cj(x) = 0 for all

i ∈ [I].

Let s be the signature row of Hi,j for some i, j. Note that row k of Hi,jc
T
j is
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∑
a∈Zℓ

2
sk+acj,a and the coefficient of xk00 . . . x

kℓ−1

ℓ−1 in hi,j(x)cj(x) is also
∑

a∈Zℓ
2
sk+acj,a.

Thus,
∑J−1

j=0 Hi,jc
T
j = 0T if and only if

∑J−1
j=0 hi,j(x)cj(x) = 0, and so the claim

holds.

Lemma 5.1.2. Let C be the quasi-dyadic code defined by a polynomial parity check

matrix H(x) ∈ F2{ℓ}I×J . Let S be a subset of [J ] with size I + 1, and let c(x) =

(c0(x), . . . , cJ−1(x)) ∈ F(2ℓ)J
2 {ℓ} be defined by

cj(x) =


perm(HS\j(x)) if j ∈ S

0 otherwise

,

where HS\j(x) ∈ F2{ℓ}I×I consists of the columns of H(x) with indices in S \j. Then

c(x) is a codeword in C.

Proof. Let S = {j0, . . . , jI} ⊆ [J ]. To show c(x) is a codeword in C, we will show that

s(x)T = H(x)c(x)T = 0. We see that for each i ∈ [I], the ith component of s(x)T is

given by

si(x) =
∑
j∈[J ]

hi,j(x)cj(x)

=
∑
j∈S

hi,j(x)cj(x)

=
∑
j∈S

hi,j(x) perm(HS\j(x))

=
∑
j∈S

hi,j(x) det(HS\j(x)),
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with the last equality holding because we are working in F2. Note that

si(x) = det





hi,j0(x) hi,j1(x) · · · hi,jI (x)

h0,j0(x) h0,j1(x) · · · h0,jI (x)

...
...

. . .
...

hI−1,j0(x) hI−1,j1(x) · · · hI−1,jI (x)




,

and so si(x) = 0, since the first row of the matrix is repeated at another point in the

matrix. Therefore, c(x) is a codeword of C.

Theorem 5.1.3. Let C be the quasi-dyadic code defined by a polynomial parity-check

matrix H(x) ∈ F2{ℓ}I×J . Then

dmin(C) ≤ min
S⊆[J ]

|S|=I+1

∑
j∈S

wt(perm(HS\j(x))),

where the minimum is only over non-zero values and min(∅) := ∞.

Proof. Let S ⊆ [J ] with |S| = I + 1 and c(x) the corresponding codeword of C from

Lemma 5.1.2. Then c(x) has weight

wt(c(x)) =
∑
j∈[J ]

wt(cj(x))

=
∑
j∈S

wt(cj(x))

=
∑
j∈S

wt(perm(HS\j(x)))

which gives the result.

We can generalize the result in 5.1.3, as well as the analogous bound in [30], to

codes over a general field F by altering the codewords we find in the process.
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Corollary 5.1.4. Let C be the quasi-dyadic code defined by a polynomial parity-check

matrix H(x) ∈ F{ℓ}I×J . Then

dmin(C) ≤ min
S=(j0,...,jI)
jk∈[J ]

∑
k∈[I+1]

wt(det(HS\jk(x))),

where the minimum is only over non-zero values and min(∅) := ∞.

Proof. As in the proof of Lemma 5.1.2, we see c(x) = (c0(x), . . . , cJ−1(x)) ∈ F(2ℓ)J{ℓ}

as given by

cj(x) =


(−1)k det(HS\jk(x)) if j = jk ∈ S

0 otherwise

is a codeword in C, since the ith component of s(x)T is given by

si(x) =
∑
j∈[J ]

hi,j(x)cj(x)

=
∑

k∈[I+1]

hi,jk(x)cjk(x)

=
∑

k∈[I+1]

hi,jk(x)(−1)k det(HS\jk(x)).

This gives

si(x) = det





hi,j0(x) hi,j1(x) · · · hi,jI (x)

h0,j0(x) h0,j1(x) · · · h0,jI (x)

...
...

. . .
...

hI−1,j0(x) hI−1,j1(x) · · · hI−1,jI (x)




,

and so si(x) = 0.

The result follows as in Theorem 5.1.3 by noting that the weight of the codeword
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given above is given by
∑

k∈[I+1]

wt(det(HS\jk(x))).

5.2 Quasi-n-adic distance bound

The minimum distance of a quasi-n-adic code, where each block is a weight one n-adic

matrix, is bounded by the number of rows of n-adic blocks in the parity check matrix.

We use the case with only two columns of n-adic blocks to obtain the bound.

Lemma 5.2.1. Given a length N code C with parity-check matrix H such that H

has row weight 2, and some vector c′ of length N , a codeword c ∈ C can be obtained

through the following process:

1. Consider the nonzero elements of c′. These correspond to columns of H. Now

consider the rows containing nonzero elements in these columns.

2. Note that there are only two nonzero elements in each of these rows. Thus, to

ensure the checks are satisfied, both must correspond to zero or both to nonzero

entries in a codeword. Thus, if only one of the elements corresponds to a nonzero

entry in c′, add the other as an appropriate nonzero entry to fulfill the check.

Call this new vector c1.

3. If we have HcT1 = 0T , we are done. Otherwise, repeat steps 1 and 2 with c1,

continuing until HcTi = 0T . Call this ci where the process terminates c.

Additionally, wt(c) will be the minimum over codewords in C containing the sup-

port of c′.

Proof. First, note that the process given above will terminate, since N is finite and

H has row weight 2, so the all 1’s vector is a codeword in C. Thus, we also know that

HcT = 0T , and so c ∈ C.
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We see that c will have the fewest possible nonzero elements in addition to those

in the support of c′, because each added element was necessary to satisfy some check.

Thus, the value of c does not depend on the order in which we add nonzero elements

to c′.

Example 5.2.2. Consider

H =



1 0 0 1 0 0

0 1 0 0 0 1

1 0 0 0 1 0

0 0 1 1 0 0


and c′ = (1, 0, 0, 0, 0, 0). Following the above process to obtain c with HcT = 0T ,

we first consider the first column, which corresponds to the only nonzero entry of c′.

Thus, we consider the first and third rows, since they have nonzero entries in the first

column, and we add nonzero entries to c′ corresponding to the other nonzero entries

of those rows to obtain c1 = (1, 0, 0, 1, 1, 0). We see HcT1 ̸= 0T , so we repeat the

process with c1.

With c1, the nonzero entries correspond to the first, fourth, and fifth columns,

which have nonzero entries in the first, third, and fourth rows. Adding the other

nonzero entries from those rows gives us c2 = (1, 0, 1, 1, 1, 0). We see HcT2 = 0T , and

so we set c = (1, 0, 1, 1, 1, 0). This gives us a codeword for C with parity-check matrix

H with minimum weight containing the support of c′. 2

Lemma 5.2.3. Let H be a parity-check matrix of a code C where H is a j × 2 array
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of weight 1 n-adic matrices:

H =



H1,1 H1,2

H2,1 H2,2

...
...

Hj,1 Hj,2


.

Given a codeword c′ of the code C ′ with parity check matrix

H ′ =



H1,1 H1,2

H2,1 H2,2

...
...

Hj−1,1 Hj−1,2


,

let c be the vector obtained by adding the fewest possible nonzero elements to c′ so

that c satisfies the parity check matrix

H ′′ =

H1,1 H1,2

Hj,1 Hj,2

 .
Then c is a codeword in C.

Proof. First, consider some c′ ∈ C ′. SinceH ′′ is made up of four permutation matrices,

each row and column has exactly two nonzero entries. Thus, we can make a new vector

c with the fewest possible additional nonzero elements such that H ′′cT = 0T by

following the process given in Lemma 5.2.1. Also, note that this process is equivalent

to adding, for each position in the support of c′, all of the variable nodes in the unique

cycle of the Tanner graph of H ′′ containing the variable node corresponding to that

position.
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Next, we want to show that HcT = 0T . We already know that c satisfies the

checks for the submatrices [H1,1 H1,2] and [Hj,1 Hj,2], so consider some check in row

m of a submatrix [Hi,1 Hi,2] for some 1 < i < j. If both nonzero entries in the row

corresponded to nonzero entries in c′, then this check is still satisfied, because we

did not remove any nonzero entries in the process of making c. Otherwise, since c′

satisfied the checks, both nonzero entries in row m must correspond to zero entries in

c′. Thus, c will satisfy the check if and only if both entries became nonzero or both

entries remained zero.

Let a1, a2, b1, b2, c1, c2 ∈ Zℓn be the positions of the nonzero signature row elements

of H1,1, H1,2, Hi,1, Hi,2, Hj,1, and Hj,2, respectively. Then for any m ∈ Zℓn, row m

of [Hi,1 Hi,2] has nonzero elements in columns (0, b1 − m) and (1, b2 − m) (recall

notation for quasi-n-adic matrices as in Example 2.2.8). We are considering the case

where both of these entries are zero in c′. Assume without loss of generality that

(0, b1 −m) corresponds to a nonzero entry in c. It suffices to show that (1, b2 −m)

also corresponds to a nonzero entry in c.

Since (0, b1 −m) corresponds to a nonzero entry in c but a zero entry in c′, there

must be some nonzero entry in c′ which is in the same cycle of the Tanner graph of

H ′′ as the vertex corresponding to (0, b1 −m). Let α be the index of this entry.

Consider the Tanner graph of H ′′. Since this graph is 2-regular, each node is

in a unique cycle. From the properties of n-adic matrices, we see that the cycle

containing the variable node corresponding to (0, b1−m) contains exactly the variable

nodes corresponding to rows of the form (0, k(c1 − c2 + a2 − a1) + b1 − m) and

(1, a2 − a1 + k(c1 − c2 + a2 − a1) + b1 −m) for k ∈ Zn. These values can be found by

considering the structure of the cycles in the Tanner graph as in the proof of Theorem

6.1.3. Thus, we know α has one of these forms.
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Let Hi be the submatrix of H ′ given by

Hi =

H1,1 H1,2

Hi,1 Hi,2

 .
Since c′ satisfies H ′c′T = 0T , we also have Hic

′T = 0T . Also, since Hi is 2-regular, the

variable node corresponding to α is in a unique cycle in the Tanner graph. Since the α

entry was nonzero in c′, all of the entries of c′ corresponding to elements of this cycle

must also have been nonzero. It suffices to show that there is some column which

has a corresponding variable node in this cycle, as well as a corresponding variable

node in the unique cycle of the Tanner graph of H ′′ containing the variable node

corresponding to (1, b2 −m). This would ensure that the (1, b2 −m) entry becomes

nonzero in the process of creating c.

As before, we see that the cycle of the Tanner graph of H ′′ containing the variable

node corresponding to (1, b2 − m) contains exactly the variable nodes of the forms

(0, c1 − c2 + k′(c1 − c2 + a2 − a1) + b2 −m) and (1, k′(c1 − c2 + a2 − a1) + b2 −m) for

k′ ∈ Zn.

If α is in the first half of c, then α = (0, k(c1 − c2 + a2 − a1) + b1 −m) for some

k ∈ Zn. Let α′ = k(c1 − c2 + a2 − a1) + b1 −m. Then, in the Tanner graph of Hi,

the variable nodes in the unique cycle containing the variable node corresponding

to α include those of the form (0, k′′(b1 − b2 + a2 − a1) + α′) for k′′ ∈ Zn. Taking
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k′′ = −1(= n− 1) and k′ = k − 1, we see:

(0, k′′(b1 − b2 + a2 − a1) + α′)

=(0,−(b1 − b2 + a2 − a1) + k(c1 − c2 + a2 − a1) + b1 −m)

=(0, c1 − c2 + (k − 1)(c1 − c2 + a2 − a1) + b2 −m)

=(0, c1 − c2 + k′(c1 − c2 + a2 − a1) + b2 −m).

Thus, there is a column such that the corresponding vertex in the Tanner graph

of H ′′ is in the same cycle as the variable node corresponding to (1, b2 −m) and the

corresponding vertex in the Tanner graph of Hi is in the same cycle as the variable

node corresponding to α. Thus, (1, b2 −m) is nonzero in c, and the claim holds in

this case.

In the other case, α = (1, a2− a1+ k(c1− c2+ a2− a1)+ b1−m) for some k ∈ Zn,

and we set α′ = a2 − a1 + k(c1 − c2 + a2 − a1) + b1 −m. In the Tanner graph of Hi,

the columns with corresponding variable nodes in the cycle containing the variable

node corresponding to α include those of the form (1, k′′(b1 − b2 + a2 − a1) + α′) for

k′′ ∈ Zn. Taking k′′ = −1(= n− 1) and k′ = k, we see:

(1, k′′(b1 − b2 + a2 − a1) + α′)

=(1,−(b1 − b2 + a2 − a1) + a2 − a1 + k(c1 − c2 + a2 − a1) + b1 −m)

=(1, k(c1 − c2 + a2 − a1) + b2 −m)

=(1, k′(c1 − c2 + a2 − a1) + b2 −m).

Again, there is a column such that the corresponding vertex in the Tanner graph

of H ′′ is in the same cycle as the variable node corresponding to (1, b2 −m) and the

corresponding vertex in the Tanner graph of Hi is in the same cycle as the variable
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node corresponding to α. Thus, (1, b2 − m) is nonzero in c, and so c ∈ C in all

cases.

Theorem 5.2.4. The minimum distance for a quasi-n-adic code with a parity check

matrix given by a j × k array of weight 1 n-adic blocks with k ≥ 2 is at most 2nj−1.

Proof. Let H be a j × k array of weight 1 n-adic blocks, and let H ′ be a j × 2

array consisting of the first two columns of blocks of H. Note that for any c′ with

H ′c′T = 0T , we can extend c′ by adding zeros to make it the appropriate length to

make a vector c with HcT = 0T . Thus, we will consider the code with parity check

matrix H ′, since the minimum distance for the code with parity check matrix H is

less than or equal to the minimum distance for the code with parity check matrix H ′.

We proceed by induction on j. If j = 1, since each column of the parity check

matrix has weight j > 0, a nonzero codeword must have weight at least 2 = 2n1−1.

Thus, the bound holds.

For j > 1, let H ′ be the given parity check matrix and H ′′ be the submatrix of H ′

given by removing the last row of weight 1 n-adic blocks. So H ′′ is a (j− 1)× 2 array

of weight 1 n-adic blocks. By our inductive hypothesis, a minimum weight vector c

such that H ′′cT = 0T has weight at most 2n(j−1)−1. By the process in Lemma 5.2.3,

we can add nonzero elements to c to obtain a vector c′ such that H ′c′T = 0T .

We know that each of the added nonzero elements in c′ correspond to variable

nodes in the Tanner graph of a 2× 2 array of weight 1 n-adic matrices. By Theorem

6.1.3, which we will prove in the next chapter, it follows that each of these nodes is

in a unique cycle and that each of these cycles contains at most 2n variable nodes.

Since c satisfied each of the checks in H ′′ and each cycle contains some check node

corresponding to a row in H ′′, any cycle with a variable node corresponding to a

nonzero element in c must have at least one additional variable node corresponding
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to a nonzero element in c to satisfy that check node. Thus, we add at most an

additional 2n − 2 nonzero elements to get c′ for each pair of nonzero elements in c.

Thus, the weight of c is at most n(j−1)−1 · (2n− 2) + 2n(j−1)−1 = 2nj−1.

This bound is tight for the case where k = 2 and for values of j such that j ≤ ℓ+1

with nℓ × nℓ n-adic blocks. We give a characterization for certain cases of when this

bound is met.

Theorem 5.2.5. Let C be the code with parity check matrix H, where H is a j × 2

array of n-adic blocks of weight 1 and dimension nℓ × nℓ, and the nonzero signature

row entries for the blocks in the first row and column are all in position 0 ∈ Zℓn.

Then if a1, . . . , aj−1 ∈ Zℓn are the positions of the signature row entries for the re-

maining blocks, we have dmin(C) = 2nj−1 if and only if the order of ai is n and

ai ̸∈ ⟨a1, . . . , ai−1⟩ for each i.

Proof. Let Ma be the n-adic block of weight 1 and dimension nℓ × nℓ with nonzero

signature row entry in position a. Then H has the form:

H =



M0 M0

M0 Ma1

M0 Ma2

...
...

M0 Maj−1


.

Consider some nonzero codeword c ∈ C. Let c =
(
(ci,a)a∈Zℓ

n

)
i∈{1,2}. Since each Ma is

a permutation matrix, there must be some α such that c1,α is nonzero. In order to

satisfy the checks in the block row [M0 Mai ], we see c2,ai+α must also be nonzero for

each i, and c2,α must be nonzero to satisfy [M0 M0]. Then, in order to satisfy the

checks in the block row [M0 M0], we see c1,ai+α must be nonzero for each i.
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Repeating this process of satisfying the checks in [M0 Mai ] and in [M0 M0] with

each new nonzero entry, we see that each c1,β+α and c2,β+α must be nonzero for

β =
∑j−1

i=1 biai with nonnegative integers bi. However, since each ai is in Zℓn, we only

need to consider bi ∈ {0, . . . , n− 1} to give unique values. Note that this gives 2nj−1

possible nonzero entries from this process, depending on choices of bi.

In order for the distance of C to be maximized at 2nj−1, each choice of (b1, . . . , bj−1)

must yield a different sum β. This happens if and only if ai has order at least n and

ai ̸∈ ⟨a1, . . . , ai−1⟩ for all i.

Corollary 5.2.6. A code C with parity check matrix H, where H is a j × k array of

n-adic blocks of weight 1 and dimension nℓ × nℓ, can have minimum distance 2nj−1

only if j ≤ ℓ+ 1.

Proof. We know 2nj−1 is the upper bound of the distance for C by Theorem 5.2.4.

Additionally, dmin(C) ≤ dmin(C ′), where C ′ is the code with parity check matrix H ′

given by the first two columns of blocks of n-adic matrices of H. We also know C ′

is equivalent to a code of the form given in Theorem 5.2.5, so we can reduce to this

case.

In Zℓn, there can be at most ℓ elements satisfying the conditions of Theorem 5.2.5.

Note that if a1, . . . , am satisfy that the order of ai is n and ai ̸∈ ⟨a1, . . . , ai−1⟩ for each

i, ⟨a1, . . . , am⟩ has order nm, and Zℓn has order nℓ. Thus, j − 1 ≤ ℓ.

Thus, quasi-dyadic and quasi-n-adic codes have poor minimum distances as the

block lengths increase.
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5.3 Examples

The Tanner-Sridhara-Fuja (TSF) codes introduced in [35] are one family of array-

based codes with algebraically chosen circulant matrices. In this section, we construct

a quasi-triadic code with comparable parameters to such a code. We first review the

construction in [35].

Example 5.3.1. Let a and b be two elements from the multiplicative group of Fℓ,

with orders j and r, respectively, and ℓ a prime. Then, the parity check matrix H is

defined as

H =



I1 Ib Ib2 . . . Ibr−1

Ia Iab Iab2 . . . Iabr−1

...
...

... . . .
...

Iaj−1 Iaj−1b Iaj−1b2 . . . Iaj−1br−1


,

where Iaibk is the p × p identity matrix cyclically shifted to the left by aibk positions,

where aibk is interpreted as an element in the integers Zℓ = {0, 1, . . . , ℓ− 1}.

For example, consider the [155, 64, 20] code that is obtained by choosing ℓ = 31, a =

5, b = 2 and j = 3, r = 5 in the above construction. The matrix is given by

H =


I1 I2 I4 I8 I16

I5 I10 I20 I9 I18

I25 I19 I7 I14 I28

 ,

where Ix is the 31×31 identity matrix cyclically shifted to the left by x positions. This

code has block length 155, dimension 64, minimum distance 20 and the corresponding

Tanner graph has a girth of 8. This code is notable for its good distance properties

which are competitive with a BCH code of comparable length. 2
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Example 5.3.2 (Quasi-triadic code). As a result of Theorem 5.2.4, a construction

of a quasi-dyadic code as a 3×5 array of dyadic matrices, which would give a similar

construction to the TSF code given above, has minimum distance at most 8. However,

we can do better by considering a quasi-triadic structure, as shown next.

Consider the quasi-triadic code C of blocklength 135 defined by parity check matrix

H =


T0 T0 T0 T0 T0

T0 T25 T21 T26 T9

T0 T6 T17 T24 T16


where Ti is the 27× 27 triadic matrix of weight 1 with the nonzero entry in position

i of the signature row (entries indexed from 0 to 26). From calculations in Magma,

we found that this code has minimum distance 16 and girth 8. The entries for this

matrix were found by fixing the first row and column to be 0 and randomly testing

other entries to find the best girth and distance. The relative minimum distance of

this example is 16
135

≈ 0.1185 and is comparable to that of the [155, 64, 20] TSF code,

which is 20
155

≈ 0.1290. 2

Furthermore, several graph automorphism properties were shown to exist within

the Tanner graph for TSF codes [34] that provide an algebraic framework for analyzing

and understanding the structure and properties of these codes. It will be interesting

to apply similar analysis to quasi-n-adic codes.
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Chapter 6

Girth and stopping sets

In this chapter, we will comment on the possible girth and stopping set sizes of Tanner

graphs for codes with n-adic and quasi-n-adic parity check matrices.

6.1 Girth and cycle structure

While efficient, iterative decoding algorithms are optimal only on cycle-free graphs

[38], such graphs do not give rise to good codes [7]. Thus, large girth is desired so

that the code graph is locally cycle-free. Moreover, decoder failure is often attributed

to the presence of combinatorial structures such as absorbing sets and stopping sets

which contain cycles. First, we consider the girth of a Tanner graph corresponding

to an n-adic matrix.

Theorem 6.1.1. The Tanner graph corresponding to an n-adic matrix M of weight 2

with nonzero elements in positions a, b ∈ Zℓn of the signature row has girth 2·#⟨b− a⟩.

Proof. Let M be a n-adic matrix with nonzero elements in the signature row in

positions a and b, and let p = #⟨b− a⟩.

First, we know that all cycles in the Tanner graph must be even, since it is

bipartite, so we can describe a cycle of length 2k by indices c1, . . . , c2k, where mci,ci+1

is nonzero for odd i and mci+1,ci is nonzero for even i (we will consider 2k + 1 ≡ 1 in
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this context). Here, even values of i correspond to variable nodes and odd values of

i to check nodes or vice versa. Note that for this to be a cycle of length 2k, we must

have ci ̸= cj for i, j the same parity and i ̸= j. Additionally, since mci,ci+1
is nonzero

for odd i and mci+1,ci is nonzero for even i, we know ci + ci+1 ∈ {a, b} for all i.

Consider {ci}2pi=1 given by

ci =


i−1
2
(b− a) i odd

a+ i−2
2
(a− b) i even

.

We want to show that {mci,ci+1
|i odd}∪{mci+1,ci |i even} gives a cycle in the Tanner

graph. First, we will show that ci ̸= cj for i, j the same parity and i ̸= j. For odd

i, j, if ci = cj, we see

i− 1

2
(b− a) =

j − 1

2
(b− a)(

j − 1

2
− i− 1

2

)
(b− a) = 0.

Thus,
(
j−1
2

− i−1
2

)
= mp for some m ∈ Z. Additionally, we know i, j ∈ {1, 3, . . . , 2p−

1}, and so i−1
2
, j−1

2
∈ {0, 1, . . . , p− 1}. Thus, −(p− 1) ≤

(
j−1
2

− i−1
2

)
≤ p− 1, and so

m = 0, and so i = j.

For even i, j, if ci = cj, we see

a+
i− 2

2
(a− b) = a+

j − 2

2
(a− b)(

j − 2

2
− i− 2

2

)
(b− a) = 0.

Thus,
(
j−2
2

− i−2
2

)
= mp for some m ∈ Z. Additionally, we know i, j ∈ {2, 4, . . . , 2p},

and so i−2
2
, j−2

2
∈ {0, 1, . . . , p − 1}. Thus, −(p − 1) ≤

(
j−2
2

− i−2
2

)
≤ p − 1, and so
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m = 0, and so i = j.

To show this is a cycle, it remains to show that ci+ ci+1 ∈ {a, b} for all i. For odd

i, we see

ci + ci+1 =
i− 1

2
(b− a) + a+

(i+ 1)− 2

2
(a− b)

= a,

and for even i, we see

ci + ci+1 = a+
i− 2

2
(a− b) +

(i+ 1)− 1

2
(b− a)

= a+ b− a

= b.

Since we also know c2p + c1 = a + 2p−2
2

(a − b) + 1−1
2
(b − a) = a + (p − 1)(a − b) =

a− (a− b) = b, this gives us a cycle of length 2p in the Tanner graph.

Next, we will show that there is no cycle of length less than 2p in the Tanner

graph. Since we know each cycle is even, we consider some cycle of length 2q given

by indices {ci}2qi=1, where {mci,ci+1
|i odd} ∪ {mci+1,ci |i even} are nonzero elements of

the matrix. We can assume that ci ̸= cj for i, j the same parity and i ̸= j, and

we know ci + ci+1, c1 + c2q ∈ {a, b} for all i, as before. We also see that for any i,

ci + ci+1 ̸= ci+1 + ci+2, since i and i+ 2 have the same parity with i ̸= i + 2 (since

we cannot have 2-cycles), and so ci ̸= ci+2. Thus, without loss of generality, we have

ci + ci+1 = a for odd i and ci + ci+1 = b for even i (so c2q + c1 = b).

For every even i, we see ci+1 − ci−1 = (ci + ci+1) − (ci−1 + ci) = b − a. We claim

that for all i, c2i−1 − c1 = (i − 1)(b − a). We know the claim is satisfied for i = 1

trivially. For i > 1, by induction, we have c2(i−1)−1 − c1 = (i − 2)(b − a), and so we
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see c2i−1 − c1 = c2i−1 − c2i−3 + c2i−3 − c1 = b − a + (i − 2)(b − a) = (i − 1)(b − a).

Thus, in particular, c2q−1 − c1 = (q − 1)(b − a). Additionally, we see c2q−1 − c1 =

c2q−1 + c2q − (c1 + c2q) = a − b. Thus, a − b = (q − 1)(b − a), and so 0 = q(b − a),

which implies q = mp for some m ∈ Z. Since the cycle is nontrivial, we know q ≥ p,

and so the cycle has length at least 2p.

Since n-adic matrices are always square, it is likely that quasi-n-adic matrices

will give more interesting codes, so we consider possible girths of Tanner graphs from

quasi-n-adic matrices. We now look at 2 × 2 arrays of weight 1 n-adic matrices and

the effect on cycle length.

Lemma 6.1.2. If M =

Mu Mv

Mx Mw

, where Ma is an n-adic matrix of weight 1 with

the nonzero signature row entry in position a ∈ Zℓn, then each cycle in the Tanner

graph corresponding to M has the same length.

Proof. First, note that a cycle of length 2k in the Tanner graph corresponding to M

can be represented as a pair of sequences (ci)
k
i=1, (ri)

k
i=1 where mri,ci and mri,ci+1

are

nonzero for each i, and ci ̸= cj, ri ̸= rj for i ̸= j.

Next, we see that the nonzero elements corresponding to a cycle in the Tanner

graph must go through the submatrices Ma in order: . . . ,Mu,Mv,Mw,Mx,Mu, . . ..

Since each Ma is a permutation matrix, we know M is a 2-regular matrix, and so if

we have mri,ci ∈Mu, then the only other nonzero element in the row is mri,ci+1
∈Mv.

Similarly, the only other nonzero element in that column is mri+1,ci+1
∈Mw, and the

only other nonzero element in the new row is mri+1,ci+2
∈Mx (then back to Mu in the
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column). Thus, without loss of generality, we can consider

mri,ci ∈


Mu i odd

Mw i even

, mri,ci+1
∈


Mv i odd

Mx i even

.

Additionally, since M is 2-regular, we know each nonzero entry is contained in

exactly one cycle.

For notation, as in Chapter 2 we will use (0, a) to denote a row or column that

corresponds to the a entry of the first block and (1, a) to denote a row or column that

corresponds to the a entry of the second block. (So for example, we know there are

nonzero entries:

M(0,0),(0,u),M(0,0),(1,v),M(1,0),(0,x),M(1,0),(1,w)

corresponding to the signature row entries of the four weight 1 dyadic matrices.)

Thus, we have

mri,ci =


m(0,r′i),(0,c

′
i)
∈Mu i odd

m(1,r′i),(1,c
′
i)
∈Mw i even

,

mri,ci+1
∈


m(0,r′i),(1,c

′
i+1)

∈Mv i odd

m(1,r′i),(0,c
′
i+1)

∈Mx i even

,

where r′i, c
′
i are the appropriate values in Zℓn such that mri,ci is in the r′i, c

′
i position of

the n-adic matrix. Additionally, since these elements of M are nonzero, m(0,r′i),(0,c
′
i)
∈

Mu implies r′i + c′i = u (and similarly for the other submatrices).

Consider the cycle that contains m(0,0),(0,u) ̸= 0. We can describe the cycle as

(ci)
k
i=1, (ri)

k
i=1, where c1 = (0, u), r1 = (0, 0), and the other elements are determined

by the other nonzero elements in the respective rows and columns. We will show that
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any cycle has length equal to this cycle.

Let (pi)
t
i=1, (qi)

t
i=1 represent a cycle of length 2t with mpi,qi ,mpi,qi+1

̸= 0 for each i

and pi ̸= pj, qi ̸= qj for each i ̸= j. As above, without loss of generality, we have

mpi,qi =


m(0,p′i),(0,q

′
i)
∈Mu i odd

m(1,p′i),(1,q
′
i)
∈Mw i even

,

mpi,qi+1
∈


m(0,p′i),(1,q

′
i+1)

∈Mv i odd

m(1,p′i),(0,q
′
i+1)

∈Mx i even

.

Consider (p′i − p′1)
t
i=1 and (q′i + u − q′1)

t
i=1. Note that if p′i + q′i = a, then (q′i + u −

q′1) + (p′i − p′1) = a + u− u = a (since m(0,p′1),(0,q
′
1)
∈ Mu). Similarly, if p′i + q′i+1 = a,

then (q′i + u − q1) + (p′i+1 − p1) = a + u − u = a. Additionally, if p′i ̸= p′j, then

p′i− p′1 ̸= p′j − p′1, and if q′i ̸= q′j, then q
′
i+ a− q′1 ̸= q′j +u− q′1. Thus, we have another

cycle of length t given by adding the corresponding prefixes to (q′i + u − q′1)
t
i=1 and

(p′i−p′1)ti=1 (determined by the sequence of n-adic matricesMu,Mv,Mw,Mx,Mu, . . .).

Note that for i = 1, this gives us m(0,p′1−p′1),(0,q′1+u−q′1) = m(0,0),(0,u) as an element in the

cycle. However, we already considered the unique cycle containing m(0,0),(0,u) above,

and so t = k, and thus, any cycle in the Tanner graph of M has length 2k.

Theorem 6.1.3. If M =

Mu Mv

Mx Mw

, where Ma is an n-adic matrix of weight 1

with the nonzero signature row entry in position a ∈ Zℓn, then the girth of the Tanner

graph is 4 ·#⟨u+ w − (v + x)⟩.

Proof. By Lemma 6.1.2, it suffices to show that the Tanner graph corresponding to

M has a cycle of length 4 ·#⟨u+ w − (v + x)⟩. Let α = u + w − (v + x). We claim
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that columns ((ci, c
′
i))

2#⟨α⟩
i=1 and rows ((ri, r

′
i))

2#⟨α⟩
i=1 with:

r2j+1 = 0 r′2j+1 = αj

r2j = 1 r′2j = w − v + α(j − 1)

c1 = 0 c′1 = a

c2j+1 = 0 c′2j+1 = v + x− w − α(j − 1)

c2j = 1 c′2j = v − α(j − 1)

gives a cycle of length 4#⟨α⟩ in the Tanner graph corresponding to M .

It suffices to show that m(ri,r′i),(ci,c
′
i)
,m(ri,r′i),(ci+1,c′i+1)

̸= 0 for each i and (ci, c
′
i) ̸=

(cj, c
′
j), (ri, r

′
i) ̸= (rj, r

′
j) for i ̸= j.

For odd i, say i = 2j + 1, we see r′2j+1 + c′2j+1 = αj + (v + x − w − α(j − 1)) =

v + x − w + α = u (and r′1 + c′1 = 0 + u = u). Since for such i, we have ri, ci = 0,

we have m(ri,r′i),(ci,c
′
i)

∈ Mu is nonzero for odd i. Additionally, r′2j+1 + c′2(j+1) =

αj + (v − α(j + 1− 1)) = v, and for such i, we have ri = 0, ci+1 = 1. Thus, we have

m(ri,r′i),(ci+1,c′i+1)
∈Mv is nonzero for odd i.

For even i, say i = 2j, we see r′2j+c
′
2j = (w−v+α(j−1))+(v−α(j−1)) = w, and so

m(ri,r′i),(ci,c
′
i)
∈Mw is nonzero for even i. Additionally, r′2j+c

′
2j+1 = (w−v+α(j−1))+

(v+x−w−α(j−1)) = x (and r′2#⟨α⟩+c
′
1 = (w−v+α(#⟨α⟩−1))+u = w−v−α+u = x),

and so m(ri,r′i),(ci+1,c′i+1)
∈Mx is nonzero for even i.

We see that (ci, c
′
i) ̸= (cj, c

′
j), (ri, r

′
i) ̸= (rj, r

′
j) for i ̸= j since for different parities

of i, j, ci ̸= cj and ri ̸= rj, and for i, j the same parity, the values of c′i, r
′
i are

distinct elements in a coset of ⟨α⟩ and so have no repeated values in the given range.

Thus, this gives us a cycle of length 4#⟨α⟩, and so the girth of the Tanner graph is

4#⟨u+ w − (v + x)⟩.



66

From this result, we see that the length of any cycle in a Tanner graph with this

construction will be divisible by 4. In particular, since the order of any element in

Zℓn is at most n, the girth of the Tanner graph of a 2 × 2 array of weight 1 n-adic

matrices is at most 4n.

6.2 Stopping sets

In addition to considering the girth of a Tanner graph, we consider the minimum

possible size of a stopping set for n-adic and quasi-n-adic codes. Considering various

weights of n-adic matrices, note that since weight 1 matrices are permutation matrices

and therefore the Tanner graphs are perfect matchings, there can be no stopping sets.

Additionally, a weight 2 n-adic matrix or a 2× ℓ array of weight 1 n-adic matrices is

2-left-regular, and so the stopping distance will be exactly half the girth.

Theorem 6.2.1. If M is a dyadic matrix of weight 3, then the Tanner graph has

stopping distance 3.

Proof. Let M be a dyadic matrix of weight 3 with nonzero entries in signature row

positions u, v, w. We see that there are no two identical columns of M , because if

there were two columns c1, c2 with nonzero entries in the same rows, this would imply

that {u+ c1, v + c1, w + c1} = {u+ c2, v + c2, w + c2}. Since c1 ̸= c2, without loss of

generality, we must have u+c1 = v+c2, v+c1 = w+c2, and w+c1 = u+c2. Note that

since we are working with dyadic matrices, the first equation implies u = v + c1 + c2

and the second equation implies w = v + c1 + c2, and so u = w. Thus, we can’t have

any two identical columns of M , and so there is no stopping set of size 2.

We can find a stopping set of size 3 by taking the columns corresponding to the

nonzero elements of the signature row: u, v, w. We know in column u, the nonzero

entries are exactly in rows 0, v + u, and w + u. Similarly, for column v, the nonzero
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entries are in rows 0, v + u, and w + v, and for column w, the nonzero entries are in

rows 0, w+ u, and w+ v. Thus, these three columns correspond to a stopping set of

size 3 in the Tanner graph.

This bound does not apply for all n-adic matrices of weight 3. For example, the

following weight 3 triadic matrix has a Tanner graph with stopping distance 2:



1 0 0 0 1 0 0 0 1

0 0 1 1 0 0 0 1 0

0 1 0 0 0 1 1 0 0

0 1 0 0 0 1 1 0 0

1 0 0 0 1 0 0 0 1

0 0 1 1 0 0 0 1 0

0 0 1 1 0 0 0 1 0

0 1 0 0 0 1 1 0 0

1 0 0 0 1 0 0 0 1



.

One stopping set of size 2 would be given by the vertices corresponding to the first

and last columns of the matrix.
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Chapter 7

Graph lifts and cycle codes

Early graph-theoretic codes focused on constructions such as cut-set codes, which are

generated by cut-sets of a graph, and cycle codes which are generated by the cycles

of a graph [31]. From their relation in graph theory, these can be shown to be dual

codes, and in [7], Etzion et al. showed that LDPC codes with cycle-free Tanner graphs

are all cut-set codes. In this last chapter, we focus on the relation between the cycle

code of a graph and the cycle code of one of its lifts.

For this chapter, we will use [n] := {1, . . . , n}.

For a graph G with edge set E = {e1, . . . , em}, we can construct the cycle code of

G, denoted C(G), by using all incidence vectors cψ ∈ Fm2 of cycles ψ in G as the rows

of a generator matrix.

Note that all codewords of C(G) correspond to cycles or unions of edge-disjoint

cycles. If c1, c2 are two incidence vectors generating C(G) corresponding to edge-

disjoint cycles, they will have disjoint support, and so c1 + c2 corresponds to the

union of the two disjoint cycles. If c1, c2 have some intersection, though, c1 + c2

corresponds to taking the symmetric difference of the two cycles, which gives another

set of edge-disjoint cycles.

Example 7.0.1. Consider the graph G in Figure 7.1 with edges e1, . . . , e5.
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e1 e2

e3

e4 e5

Figure 7.1: A graph G with edge labels

There are three cycles in this graph: e1e2e5e4, e1e3e4, and e2e3e5. Thus, the cycle

code for this graph has generator matrix

G =


1 1 0 1 1

1 0 1 1 0

0 1 1 0 1

 .

This is a [5, 2] linear code, as the third row of G can be obtained by adding the

first two. This addition, (1, 1, 0, 1, 1)+ (1, 0, 1, 1, 0) = (0, 1, 1, 0, 1), corresponds to the

symmetric difference between the cycles e1e2e5e4 and e1e3e4, leaving the cycle e2e3e5.

. 2

In Chapter 2.1.1, we discussed how to take a lift of a directed graph. Similarly,

we can take a lift of an undirected graph by giving arbitrary directions to each edge

and then taking a lift. Thus, we can consider both the cycle code of a graph and

the cycle code of a lift of a graph. When constructing the lift of a graph, each edge

is assigned a permutation, and so we can consider the net permutation (also called

net voltage in [13]) of a walk by composing the permutations of the edges along the

walk. If a directed edge is traversed backwards, the inverse permutation is added to

the composition, rather than the original permutation.
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Example 7.0.2. Consider the graph G with edges that are directed and have assign-

ments to permutations in S3, where ι = (1)(2)(3), the identity permutation, as in

Figure 7.2.

e1 e2

e3

e4 e5

e1 7→ (1 2 3), e2 7→ (1 2),

e3 7→ (1 3 2), e4 7→ ι, e5 7→ ι

Figure 7.2: A directed graph G with edge labels and permutations in S3

We see that the walk e1e
−1
2 e−1

5 e−1
4 (where an edge e−1 denotes traversing in the

opposite direction) has net permutation ι−1 ◦ ι−1 ◦ (1 2)−1 ◦ (1 2 3) = (2 3) and the

walk e−1
2 e−1

5 e−1
4 e1 has net permutation (1 2 3) ◦ ι−1 ◦ ι−1 ◦ (1 2)−1 = (1 3). 2

While we can find the net permutation of a walk, the net permutation of a cycle

is not necessarily unique, as shown in Example 7.0.2. Recall that the cycle type

c1, . . . , cm of a permutation σ is the non-decreasing list of the sizes of cycles in σ. For

example, if σ = (1 4)(2 7 8)(3 6)(5) ∈ S8, then the cycle type of σ is 1, 2, 2, 3. We can

see that the cycle type of a net permutation of a cycle is unique. It is known that the

conjugates have the same cycle type. Thus, a net permutation and its inverse, which

would be obtained by traversing the cycle in the opposite direction, have the same

cycle type. Also, we can begin a net permutation at different points in the cycle,

which would give us permutations of the form πσ and σπ, which are again conjugates
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and so have the same cycle type. Thus, we can define a unique net cycle type for a

cycle C when its edges are assigned permutations for a lift.

In this chapter, we will consider how to obtain a generator matrix for the cycle

code of a lifted graph when given the generator matrix for the cycle code of the

original graph. Example 7.0.3 shows the relation for a particular graph and lift.

Example 7.0.3. Consider the graph G and lift Ĝ given in Figure 7.3, where permu-

tations ι = (1)(2) and σ = (1 2) are elements of S2.

e1 e2

e3

e4 e5

e1,1

e1,2 e2,1

e2,2

e3,1 e3,2

e4,1
e4,2 e5,1

e5,2

e1 7→ σ, e2 7→ σ, e3 7→ ι, e4 7→ ι, e5 7→ σ

Figure 7.3: A graph G with degree 2 lift Ĝ

We can find that the C(G) is generated by

G =


1 1 0 1 1

1 0 1 1 0

0 1 1 0 1

 .
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and C(Ĝ) is generated by

G′ =

e1,1 e1,2 e2,1 e2,2 e3,1 e3,2 e4,1 e4,2 e5,1 e5,2


1 1 1 1 0 0 1 1 1 1

1 1 0 0 1 1 1 1 0 0

0 0 1 0 0 1 0 0 0 1

0 0 0 1 1 0 0 0 1 0

.

Note that some characteristics of G′ can be seen from G by considering the net

cycle type along each cycle. The net cycle type of C1 = e1e
−1
2 e−1

5 e−1
4 is 2, and there is

one cycle in Ĝ corresponding to C1, which has twice the length of C1. Similarly, the

net cycle type of C2 = e1e3e
−1
4 is 2, and there is again one cycle in Ĝ corresponding to

C2, which has twice the length of C2. Each of these corresponds to a row in G′ with

twice the weight of a row in G. In contrast, the net cycle type of C3 = e2e3e5 is 1, 1.

In Ĝ, there are two cycles corresponding to C3, each with length equal to C3. These

correspond to two rows in G′, each of which has the same weight as the third row of

G. This relation between the cycles in a graph and its lift is given in Theorem 7.0.4.

. 2

Gross and Tucker look at permutation voltage graphs in [13]. Here, we reconsider

their result on the number of cycles in the permutation voltage graphs and give the

particular structure of the cycle in order to find the generator matrix for the cycle

code of a lifted graph.

Theorem 7.0.4. Let C = (e1, . . . , ek) be a k-cycle in a graph G with a degree ℓ

lift Ĝ such that the edge ei is assigned permutation σi ∈ Sℓ. Let σi,j = σi ◦ σj and

σ = σk,...,1 = σk ◦ · · · ◦ σ1. If C has net cycle type c1, c2, . . . , cm, then in the degree ℓ
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lift Ĝ, C corresponds to #{i|ci = j} edge-disjoint cycles of length jk with the form

Ca =
(
e1,a, e2,σ1(a), e3,σ2,1(a), . . . , ek,σk−1,...,1(a), e1,σ(a), . . . , ek,(σ−1

k ◦σj)(a)

)

for a ∈ [ℓ].

Proof. Consider C = (e1, . . . , ek) a k-cycle in a graph G with a degree ℓ lift Ĝ such

that the net cycle type of C is c1, c2, . . . , cm. We can find a particular net permutation

corresponding to this cycle by taking σ = σk ◦ · · · ◦ σ1.

Without loss of generality, consider the cycle in Ĝ corresponding to C and contain-

ing e1,a (call this Ca). Let ci be the length of the cycle in σ containing a. Note that

in Ca, we have the path e1,a, e2,σ1(a), e3,σ2,1(a), . . . , ek,σk−1,...,1(a), e1,σ(a). If σ(a) = a, then

Ca also has length k. Otherwise, we can continue the path through the cycle of σ con-

taining a to get Ca =
(
e1,a, e2,σ1(a), e3,σ2,1(a), . . . , ek,σk−1,...,1(a), e1,σ(a), . . . , ek,(σ−1

k ◦σci )(a)

)
.

Thus, the length of Ca is kci. Repeating this process with the other cycles in σ gives

the result.

Considering how lifts affect cycles in a graph, we can consider the relation between

the cycle code of the lift of a graph G and the cycle code of G. A cycle in the lift Ĝ can

correspond to a cycle in G or a closed walk in G. We plan to make this relationship

more precise in a future work, along with examining the duals of these codes, which are

cut-set codes. Here, we can begin to consider the relationship between the generator

matrices of these two cycle codes.

Corollary 7.0.5. Let G be a graph with degree ℓ lift Ĝ. A generator matrix G′ of C(Ĝ)

can be obtained from the generator matrix G of C(G) with rows given by all incidence

vectors of cycles by the following process:
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1. Consider each row of G corresponding to a cycle C. Without loss of generality,

C = e1 . . . ek.

2. Let m be the number of cycles in a net permutation σ of C, i.e. σ = σk ◦· · ·◦σ1,

and order the cycles: π1, . . . , πm.

3. Replace each entry gC,e with an m× ℓ matrix such that:

� If gC,e = 0, the matrix is all zeros.

� If gC,e = 1, the (p, q) entry of the matrix is 1 if there is some a ∈ πp such

that σi−1,...,1(a) = q, where e = ei, and it is 0 otherwise.

Proof. From Theorem 7.0.4, we know that a k-cycle C = (e1, . . . , ek) corresponds to

#{i|ci = j} edge-disjoint cycles of length jk with the form

Ca =
(
e1,a, e2,σ1(a), e3,σ2,1(a), . . . , ek,σk−1,...,1(a), e1,σ(a), . . . , ek,(σ−1

k ◦σj)(a)

)

for a ∈ [ℓ]. It remains to show that the construction of G′ given above yields the

incidence matrix for these cycles.

For a cycle of this form, note that all the entries corresponding to e1 are exactly

the ones corresponding to the particular cycle of σ containing a, and so G′ is accurate

for these entries. Call this cycle π. All the entries in this cycle corresponding to ei

have the form ei,(σi−1,...,1◦σn)(a) for some n. However, note that σn(a) ∈ π, so there

is some a′ ∈ π such that ei,(σi−1,...,1◦σn)(a) = ei,σi−1,...,1(a′). Thus G′ gives an incidence

matrix for cycles of the form above, that is, for cycles in Ĝ.

In some special cases, we find that the process of obtaining the generator matrix

for some C(Ĝ) from the generator matrix of C(G) can be simpler than that given

above. For example, when G is 2-regular and so is a union of disjoint cycles, we find
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that the cycle code of Ĝ is generated by a matrix lift of the generator matrix G of

C(G) under certain permutation conditions.

Theorem 7.0.6. For G a 2-regular graph, if G is the generator matrix of the cycle

code C(G), then the generator matrix for the cycle code C(Ĝ) of a lift of G is a matrix

lift of G if and only if each cycle in G has net cycle type 1, . . . , 1.

Proof. First, we know that since G is 2-regular, it is a union of disjoint cycles. Note

that since lifting a graph preserves the degree of each vertex, Ĝ is also 2-regular, and

so is a union of disjoint cycles. We will begin by considering a single component of

G, i.e. a single cycle. Let C = (e1, . . . , ek) be this cycle. In this case, we know from

Theorem 7.0.4 that a degree ℓ lift Ĝ where each cycle in G has net cycle type 1, . . . , 1

will contain ℓ cycles of length k corresponding to C. Thus, the cycle code of Ĉ is

generated by ℓ codewords of weight k with disjoint support. Because the cycles in G

are disjoint, we see that C(Ĝ) is generated by codewords with disjoint support, and

there are jℓ codewords in this generating set with weight k, where j is the number of

k-cycles in G.

Similarly, since G is a union of disjoint cycles, C(G) is generated by codewords with

disjoint support, and there are j codewords in this generating set with weight k, where

j is again the number of k-cycles in G. Taking a degree ℓ lift of the generator matrix

replaces each nonzero element with an ℓ×ℓ permutation matrix. Since the codewords

in the generator matrix have disjoint support, this process results in jℓ codewords

of weight k, with all codewords having disjoint support. Thus, this generates a code

equivalent to C(Ĝ).

Conversely, note that if some cycle of length k in G has a net cycle type c1, . . . , cm

where cm ̸= 1, then by Theorem 7.0.4, this corresponds to cycles of length cmk in Ĝ.

Again, Ĝ is a union of disjoint cycles, and so C(Ĝ) is generated by codewords with
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disjoint support. Again, in the degree ℓ lift of the generator matrix of C(G), this

cycle corresponds to ℓ codewords of weight k. Since all codewords in the generator

matrix have disjoint support and we have codewords of different weights in Ĝ and

the generator matrix of C(Ĝ), it follows that Ĝ does not generate C(Ĝ).
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Chapter 8

Conclusions

In this dissertation, we considered various properties of n-adic matrices and n-adic

parity check codes. In particular, we derived bounds on the minimum distance of n-

adic and quasi-n-adic codes and found a quasi-triadic code with similar parameters to

another code from the literature. Additionally, we found properties of the dimension

and dual of dyadic codes and used them to construct quantum codes, including one

which maximizes parameters. We examined other parameters, such as the girth and

stopping distance of n-adic codes. Finally, we considered how to obtain cycle codes

of lifts of graphs from the cycle code of a base graph.

This work prompts several questions for future research. It would be interesting to

generalize the various n-adic and quasi-n-adic results to larger arrays and matrices of

different weights. Additionally, one could search for additional classical and quantum

codes with good parameters or give proofs that such codes exist.



78

Bibliography

[1] M. Baldi. LDPC and MDPC codes in cryptography: are (decoding) failures

acceptable? Algebraic Coding and Cryptography on the East Coast Seminar

Series, 2020.

[2] G. Banegas, P. S. L. M. Barreto, E. Persichetti, and P. Santini. Designing

efficient dyadic operations for cryptographic applications. Cryptology ePrint

Archive, Report 2018/650, 2018. https://ia.cr/2018/650.

[3] P. Barreto, R. Lindner, and R. Misoczki. Monoidic codes in cryptography. volume

2011, pages 179–199, 11 2011.

[4] A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist.

Phys. Rev. A, 54:1098–1105, Aug 1996.

[5] S.-Y. Chung, T. Richardson, and R. Urbanke. Analysis of sum-product decod-

ing of low-density parity-check codes using a gaussian approximation. IEEE

Transactions on Information Theory, 47(2):657–670, 2001.

[6] I. B. Djordjevic, L. Xu, T. Wang, and M. Cvijetic. Large girth low-density parity-

check codes for long-haul high-speed optical communications. In OFC/NFOEC

2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic

Engineers Conference, pages 1–3, 2008.

https://ia.cr/2018/650


79

[7] T. Etzion, A. Trachtenberg, and A. Vardy. Which codes have cycle-free tanner

graphs? IEEE Transactions on Information Theory, 45(6):2173–2181, 1999.

[8] J. L. Fan. Array codes as ldpc codes. 2001.

[9] J.-C. Faugère, A. Otmani, L. Perret, and J.-P. Tillich. Algebraic cryptanalysis

of mceliece variants with compact keys. In H. Gilbert, editor, Advances in Cryp-

tology – EUROCRYPT 2010, pages 279–298, Berlin, Heidelberg, 2010. Springer

Berlin Heidelberg.

[10] R. Gallager. Low-density parity-check codes. IRE Transactions on Information

Theory, 8(1):21–28, 1962.

[11] D. Gottesman. Stabilizer codes and quantum error correction. PhD thesis,

California Institute of Technology, 1997.

[12] M. Grassl. Bounds on the minimum distance of linear codes and quantum codes.

Online available at http://www.codetables.de, 2007. Accessed on 2023-09-19.

[13] J. L. Gross and T. W. Tucker. Topological Graph Theory. Wiley-Interscience,

USA, 1987.

[14] C. A. Kelley. Codes over graphs. In W. C. Huffman, J.-L. Kim, and P. Solé,
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