21,858 research outputs found

    Locally Stable Marriage with Strict Preferences

    Full text link
    We study stable matching problems with locality of information and control. In our model, each agent is a node in a fixed network and strives to be matched to another agent. An agent has a complete preference list over all other agents it can be matched with. Agents can match arbitrarily, and they learn about possible partners dynamically based on their current neighborhood. We consider convergence of dynamics to locally stable matchings -- states that are stable with respect to their imposed information structure in the network. In the two-sided case of stable marriage in which existence is guaranteed, we show that the existence of a path to stability becomes NP-hard to decide. This holds even when the network exists only among one partition of agents. In contrast, if one partition has no network and agents remember a previous match every round, a path to stability is guaranteed and random dynamics converge with probability 1. We characterize this positive result in various ways. For instance, it holds for random memory and for cache memory with the most recent partner, but not for cache memory with the best partner. Also, it is crucial which partition of the agents has memory. Finally, we present results for centralized computation of locally stable matchings, i.e., computing maximum locally stable matchings in the two-sided case and deciding existence in the roommates case.Comment: Conference version in ICALP 2013; to appear in SIAM J. Disc Mat

    Matching under Preferences

    Get PDF
    Matching theory studies how agents and/or objects from different sets can be matched with each other while taking agents\u2019 preferences into account. The theory originated in 1962 with a celebrated paper by David Gale and Lloyd Shapley (1962), in which they proposed the Stable Marriage Algorithm as a solution to the problem of two-sided matching. Since then, this theory has been successfully applied to many real-world problems such as matching students to universities, doctors to hospitals, kidney transplant patients to donors, and tenants to houses. This chapter will focus on algorithmic as well as strategic issues of matching theory. Many large-scale centralized allocation processes can be modelled by matching problems where agents have preferences over one another. For example, in China, over 10 million students apply for admission to higher education annually through a centralized process. The inputs to the matching scheme include the students\u2019 preferences over universities, and vice versa, and the capacities of each university. The task is to construct a matching that is in some sense optimal with respect to these inputs. Economists have long understood the problems with decentralized matching markets, which can suffer from such undesirable properties as unravelling, congestion and exploding offers (see Roth and Xing, 1994, for details). For centralized markets, constructing allocations by hand for large problem instances is clearly infeasible. Thus centralized mechanisms are required for automating the allocation process. Given the large number of agents typically involved, the computational efficiency of a mechanism's underlying algorithm is of paramount importance. Thus we seek polynomial-time algorithms for the underlying matching problems. Equally important are considerations of strategy: an agent (or a coalition of agents) may manipulate their input to the matching scheme (e.g., by misrepresenting their true preferences or underreporting their capacity) in order to try to improve their outcome. A desirable property of a mechanism is strategyproofness, which ensures that it is in the best interests of an agent to behave truthfully

    A Stable Marriage Requires Communication

    Full text link
    The Gale-Shapley algorithm for the Stable Marriage Problem is known to take Θ(n2)\Theta(n^2) steps to find a stable marriage in the worst case, but only Θ(nlog⁥n)\Theta(n \log n) steps in the average case (with nn women and nn men). In 1976, Knuth asked whether the worst-case running time can be improved in a model of computation that does not require sequential access to the whole input. A partial negative answer was given by Ng and Hirschberg, who showed that Θ(n2)\Theta(n^2) queries are required in a model that allows certain natural random-access queries to the participants' preferences. A significantly more general - albeit slightly weaker - lower bound follows from Segal's general analysis of communication complexity, namely that Ω(n2)\Omega(n^2) Boolean queries are required in order to find a stable marriage, regardless of the set of allowed Boolean queries. Using a reduction to the communication complexity of the disjointness problem, we give a far simpler, yet significantly more powerful argument showing that Ω(n2)\Omega(n^2) Boolean queries of any type are indeed required for finding a stable - or even an approximately stable - marriage. Notably, unlike Segal's lower bound, our lower bound generalizes also to (A) randomized algorithms, (B) allowing arbitrary separate preprocessing of the women's preferences profile and of the men's preferences profile, (C) several variants of the basic problem, such as whether a given pair is married in every/some stable marriage, and (D) determining whether a proposed marriage is stable or far from stable. In order to analyze "approximately stable" marriages, we introduce the notion of "distance to stability" and provide an efficient algorithm for its computation

    Stable Secretaries

    Full text link
    We define and study a new variant of the secretary problem. Whereas in the classic setting multiple secretaries compete for a single position, we study the case where the secretaries arrive one at a time and are assigned, in an on-line fashion, to one of multiple positions. Secretaries are ranked according to talent, as in the original formulation, and in addition positions are ranked according to attractiveness. To evaluate an online matching mechanism, we use the notion of blocking pairs from stable matching theory: our goal is to maximize the number of positions (or secretaries) that do not take part in a blocking pair. This is compared with a stable matching in which no blocking pair exists. We consider the case where secretaries arrive randomly, as well as that of an adversarial arrival order, and provide corresponding upper and lower bounds.Comment: Accepted for presentation at the 18th ACM conference on Economics and Computation (EC 2017

    "Almost-stable" matchings in the Hospitals / Residents problem with Couples

    Get PDF
    The Hospitals / Residents problem with Couples (hrc) models the allocation of intending junior doctors to hospitals where couples are allowed to submit joint preference lists over pairs of (typically geographically close) hospitals. It is known that a stable matching need not exist, so we consider min bp hrc, the problem of finding a matching that admits the minimum number of blocking pairs (i.e., is “as stable as possible”). We show that this problem is NP-hard and difficult to approximate even in the highly restricted case that each couple finds only one hospital pair acceptable. However if we further assume that the preference list of each single resident and hospital is of length at most 2, we give a polynomial-time algorithm for this case. We then present the first Integer Programming (IP) and Constraint Programming (CP) models for min bp hrc. Finally, we discuss an empirical evaluation of these models applied to randomly-generated instances of min bp hrc. We find that on average, the CP model is about 1.15 times faster than the IP model, and when presolving is applied to the CP model, it is on average 8.14 times faster. We further observe that the number of blocking pairs admitted by a solution is very small, i.e., usually at most 1, and never more than 2, for the (28,000) instances considered
    • 

    corecore