35,242 research outputs found

    A bijection for plane graphs and its applications

    No full text
    International audienceThis paper is concerned with the counting and random sampling of plane graphs (simple planar graphs embedded in the plane). Our main result is a bijection between the class of plane graphs with triangular outer face, and a class of oriented binary trees. The number of edges and vertices of the plane graph can be tracked through the bijection. Consequently, we obtain counting formulas and an efficient random sampling algorithm for rooted plane graphs (with arbitrary outer face) according to the number of edges and vertices. We also obtain a bijective link, via a bijection of Bona, between rooted plane graphs and 1342-avoiding permutations. 1 Introduction A planar graph is a graph that can be embedded in the plane (drawn in the plane without edge crossing). A pla-nar map is an embedding of a connected planar graph considered up to deformation. The enumeration of pla-nar maps has been the subject of intense study since the seminal work of Tutte in the 60's [20] showing that many families of planar maps have beautiful counting formulas. Starting with the work of Cori and Vauquelin [10] and then Schaeffer [18, 19], bijective constructions have been discovered that provide more transparent proofs of such formulas. The enumeration of planar graphs has also been the focus of a lot of efforts, culminating with the asymptotic counting formulas obtained by Giménez and Noy [16]. In this paper we focus on simple planar maps (planar maps without loops nor multiple edges), which are also called plane graphs. This family of planar maps has, quite surprisingly, not been considered until fairly recently. This is probably due to the fact that loops and multiple edges are typically allowed in studies about planar maps, whereas they are usually forbidden in studies about planar graphs. At any rate, the first result about plane graphs was an exact algebraic expressio

    Interdiction Problems on Planar Graphs

    Full text link
    Interdiction problems are leader-follower games in which the leader is allowed to delete a certain number of edges from the graph in order to maximally impede the follower, who is trying to solve an optimization problem on the impeded graph. We introduce approximation algorithms and strong NP-completeness results for interdiction problems on planar graphs. We give a multiplicative (1+ϵ)(1 + \epsilon)-approximation for the maximum matching interdiction problem on weighted planar graphs. The algorithm runs in pseudo-polynomial time for each fixed ϵ>0\epsilon > 0. We also show that weighted maximum matching interdiction, budget-constrained flow improvement, directed shortest path interdiction, and minimum perfect matching interdiction are strongly NP-complete on planar graphs. To our knowledge, our budget-constrained flow improvement result is the first planar NP-completeness proof that uses a one-vertex crossing gadget.Comment: 25 pages, 9 figures. Extended abstract in APPROX-RANDOM 201

    Wavelength routing in optical networks of diameter two

    Get PDF
    AbstractWe consider optical networks with routing by wavelength division multiplexing. We show that wavelength switching is unnecessary in routings where communication paths use at most two edges. We then exhibit routings in some explicit pseudo-random graphs, showing that they achieve optimal performance subject to constraints on the number of edges and the maximal degree. We also observe the relative inefficiency of planar networks

    Linear-time calculation of the expected sum of edge lengths in planar linearizations of trees

    Get PDF
    Dependency graphs have proven to be a very successful model to represent the syntactic structure of sentences of human languages. In these graphs, widely accepted to be trees, vertices are words and arcs connect syntactically-dependent words. The tendency of these dependencies to be short has been demonstrated using random baselines for the sum of the lengths of the edges or its variants. A ubiquitous baseline is the expected sum in projective orderings (wherein edges do not cross and the root word of the sentence is not covered by any edge). It was shown that said expected value can be computed in O(n)O(n) time. In this article we focus on planar orderings (where the root word can be covered) and present two main results. First, we show the relationship between the expected sum in planar arrangements and the expected sum in projective arrangements. Second, we also derive a O(n)O(n)-time algorithm to calculate the expected value of the sum of edge lengths. These two results stem from another contribution of the present article, namely a characterization of planarity that, given a sentence, yields either the number of planar permutations or an efficient algorithm to generate uniformly random planar permutations of the words. Our research paves the way for replicating past research on dependency distance minimization using random planar linearizations as random baseline.Comment: Updated with comments from a colleagu

    Forbidden Subgraphs in Connected Graphs

    Get PDF
    Given a set ξ={H1,H2,...}\xi=\{H_1,H_2,...\} of connected non acyclic graphs, a ξ\xi-free graph is one which does not contain any member of % \xi as copy. Define the excess of a graph as the difference between its number of edges and its number of vertices. Let {\gr{W}}_{k,\xi} be theexponential generating function (EGF for brief) of connected ξ\xi-free graphs of excess equal to kk (k≥1k \geq 1). For each fixed ξ\xi, a fundamental differential recurrence satisfied by the EGFs {\gr{W}}_{k,\xi} is derived. We give methods on how to solve this nonlinear recurrence for the first few values of kk by means of graph surgery. We also show that for any finite collection ξ\xi of non-acyclic graphs, the EGFs {\gr{W}}_{k,\xi} are always rational functions of the generating function, TT, of Cayley's rooted (non-planar) labelled trees. From this, we prove that almost all connected graphs with nn nodes and n+kn+k edges are ξ\xi-free, whenever k=o(n1/3)k=o(n^{1/3}) and ∣ξ∣<∞|\xi| < \infty by means of Wright's inequalities and saddle point method. Limiting distributions are derived for sparse connected ξ\xi-free components that are present when a random graph on nn nodes has approximately n2\frac{n}{2} edges. In particular, the probability distribution that it consists of trees, unicyclic components, ......, (q+1)(q+1)-cyclic components all ξ\xi-free is derived. Similar results are also obtained for multigraphs, which are graphs where self-loops and multiple-edges are allowed

    Spanning forests and the vector bundle Laplacian

    Full text link
    The classical matrix-tree theorem relates the determinant of the combinatorial Laplacian on a graph to the number of spanning trees. We generalize this result to Laplacians on one- and two-dimensional vector bundles, giving a combinatorial interpretation of their determinants in terms of so-called cycle rooted spanning forests (CRSFs). We construct natural measures on CRSFs for which the edges form a determinantal process. This theory gives a natural generalization of the spanning tree process adapted to graphs embedded on surfaces. We give a number of other applications, for example, we compute the probability that a loop-erased random walk on a planar graph between two vertices on the outer boundary passes left of two given faces. This probability cannot be computed using the standard Laplacian alone.Comment: Published in at http://dx.doi.org/10.1214/10-AOP596 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore