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Abstract

We consider optical networks with routing by wavelength division multiplexing. We show that wavelength switching
is unnecessary in routings where communication paths use at most two edges. We then exhibit routings in some explicit
pseudo-random graphs, showing that they achieve optimal performance subject to constraints on the number of edges
and the maximal degree. We also observe the relative ine0ciency of planar networks. c© 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

A routing R for a graph G is an assignment, to each pair of vertices a; b, of a path P(a; b)
between a and b in G. The switching number s(G;R) of the routing is the maximum, over all edges
e of G, of the number of paths P in R that contain e. The switching number s(G) of the graph G
is the minimum of s(G;R) over all possible routings R. The routing number r(G;R) of the routing
is the minimum number of colours needed so that each path P can be assigned a colour, in such
a way that whenever two paths have a common colour then they have no edges in common. The
routing number r(G) of the graph G is the minimum of r(G;R) over all routings R of G. Clearly
s(G;R)6 r(G;R) and s(G)6 r(G).

The perspective of this paper is theoretical, but our initial motivation comes from the problems
arising in optical networks, where it is necessary to set up a communication path between each
pair of vertices. Messages from a to b are transmitted along the path P(a; b). Each edge of the
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network is a @bre optic link that can support several simultaneous communications by means of
wavelength division multiplexing; that is, each of the paths P(a; b) using the edge is assigned a
diAerent wavelength of light, and the messages are transmitted along the edge using these diAerent
wavelengths. In a technically simple network, the message travelling along a given path P(a; b)
would use the same wavelength in every edge that it travelled through. But with fancier hardware,
wavelength switching is possible; in this case, the wavelength used for a given message can be
changed when the message passes through a vertex and enters a fresh edge. It can readily be seen that,
where wavelength switching is available, communication is possible provided each edge can support
s(G) wavelengths. However, if wavelength switching is not available, communication is possible
only if edges can support r(G) diAerent wavelengths. The parameter s(G) has been well studied.
But for optical networks, the parameter r(G) is important because, in practice, wavelength switching
is technically di0cult and tends to cause severe degradation of performance due to the conversion
of the optical signal to an electrical one and back again. More information about constraints and
algorithms for e0cient routing is given by Raghavan and Upfal [14].

The routings that are in some simple sense (described in Section 2) the most e0cient, are those
in which P(a; b) is the edge ab if a and b are adjacent, and otherwise P(a; b) is a path of length
two. Our principal observation is that, in such routings, wavelength switching is unnecessary.

Theorem 1. Let R be a routing of a graph G; in which every pair of adjacent vertices is joined
by a path of length one (namely the edge between them) and every nonadjacent pair is joined
by a path of length two. Then s(G;R) = r(G;R). In particular; if R satis6es s(G) = s(G;R) then
s(G) = r(G).

The proof of this theorem is given in Section 3.

Another instance where wavelength switching is not really required is when the network is just a
ring—that is, G is a cycle [15]. But, in general, it is known that r(G) might be bigger than s(G);
for example, Jansen [9] has described a network G for which r(G)¿ 5s(G)=3.

Random graphs perform well as networks achieving the minimum value of s(G) for a given size
(number of edges) and maximum degree. Explicit graphs having similar characteristics are called
pseudo-random graphs. In Section 4 we give explicit routings for a few such graphs—these graphs
are optimal in terms of minimizing s(G) and, in view of Theorem 1, of minimizing r(G) also (as
a function of size and maximum degree). By contrast, in Section 5 we remark on the ine0ciency
of planar networks.

Throughout the paper we shall, unless stated otherwise, include multigraphs in the discussion—
that is, graphs in which multiple edges are allowed. The term simple graph will refer to a graph
without multiple edges. Apart from this exception, our terminology is that of BollobJas [2].

2. A simple lower bound

Let the multigraph G have order n and size e(G). We de@ne the edge density p(G) of G to
be p(G) = e(G)=( n2). In any routing R of G, the length of the path P(a; b) is at least d(a; b), the
distance in G between the vertices a and b. So the average number of communication paths per
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edge is at least

dist(G) =
1

e(G)

∑
a;b∈V (G)

d(a; b):

Clearly s(G)¿ dist(G). Now d(a; b)¿ 2 unless ab is an edge of G. Therefore,

dist(G)¿
1

e(G)

{
2
[(

n
2

)
− e(G)

]
+ e(G)

}
=

2
p(G)

− 1:

Thus, we obtain what we call the distance bound, namely

r(G)¿ s(G)¿ �dist(G)�¿
⌈

2
p

⌉
− 1 where p=p(G): (†)

For a network to come close to achieving s(G) = 2=p − 1, it must have a routing in which most
paths have length at most two. The problem of @nding good sparse networks is closely related to the
problem of @nding graphs of diameter two having minimal size subject to a bound on the maximum
degree. This is a classical problem of extremal graph theory. We shall say more in Section 4.

However, there is a further signi@cance to routings in which paths have length at most two.

3. Paths of length two

It is convenient here to de@ne a sub-routing S of G to be a collection of paths P(a; b) between
some, though not necessarily all, pairs of vertices a; b of G.

Theorem 2. Let G be a graph and let k be an integer. Let S be a sub-routing of G in which all
paths have length two and such that no edge of G appears in more than k paths of S. Then each
path of S can be assigned one of k + 1 colours so that no two paths sharing a common edge
receive the same colour.

Proof. We construct an ancillary graph H . The vertices of H are the edges of G. Two vertices
of H are joined if the two edges of G form a path of S. Then the maximum degree of H is at
most k. Moreover, H will be a simple graph even if G itself is not. Therefore, by Vizing’s theorem
[17,4], the edges of H can be coloured with k+1 colours so that no two incident edges receive like
colours. Since each edge of H corresponds to a path of S, the colouring of H gives the required
colouring of S.

Proof of Theorem 1. Let S be the sub-routing of R consisting of all the paths of length two. Since
each edge of G is a path of R, Theorem 2 applies with k = s(G;R) − 1. So colour the paths of S
with s(G;R) colours. Since the paths of length two containing a given edge use at most s(G;R)− 1
colours, there is a spare colour to colour the path of length one in R which consists of this edge
alone. Thus all paths of R have been coloured using only s(G;R) colours, and so r(G;R)6 s(G;R).
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We note that Vizing’s theorem, and therefore Theorem 1, is eAective insofar as there is a poly-
nomial time algorithm for @nding the colouring; hence it is easy to remove wavelength switching
from a routing using paths of length two.

In the examples in the next section we shall construct routings R satisfying the requirements of
Theorem 1 and having s(G;R) = �2=p� − 1. It follows from (†) that these examples are optimal for
their size: they satisfy r(G) = �2=p� − 1.

4. Pseudo-random constructions of e�cient networks

For the distance bound (†) to be achieved, the network must have diameter two. For edge densities
p greater than 1=

√
n there are (more or less) regular graphs that will work. In particular, Wischik

[19] has proved a result for dense graphs, namely, that the routing number r(G) of a su0ciently
large random graph G, whose edges are chosen independently with constant probability q, almost
certainly satis@es r(G) = �2=p� − 1 = �2=q� − 1, provided 2=q is not an integer (this is a necessary
condition).

To @nd explicit examples of dense e0cient networks we turn to the theory of pseudo-random
graphs, as enunciated in [16] and also in [5]. In particular, the Paley graphs are standard examples
of pseudo-random graphs with density 1

2 . In Section 4.1, we show that Paley graphs are optimal
optical networks.

There is a considerable classical literature devoted to the subject of graphs of diameter two, small
size and low maximum degree, beginning with the papers of Erdős and RJenyi [7] and Erdős, RJenyi
and SJos [8]—see BollobJas [2, p.176]. From a technical point of view it might be desirable to keep
the maximum degree as small as possible, so that the tra0c through a single vertex does not become
prohibitively large. (Of course, if this is not a constraint, then the most e0cient network is a star.)

The minimum maximal degree of a graph of diameter two is around
√
n. The Erdős–RJenyi graphs

are the classical extremal examples. In Section 4.2, we show that these graphs too are optimal optical
networks.

When the edge density p drops below 1=
√
n it is necessary that the maximum degree increase in

order that the graph still have diameter two. Good examples are given by BollobJas [1]. In Section
4.3, we show that these graphs (and, even more so, slight modi@cations of them) are good optical
networks.

Examples of very sparse pseudo-random graphs are given by several authors, such as Margulis
[13], Lubotzky, Philips and Sarnak [12] and Lazebnik, Ustimenko and Woldar [10]. These graphs
do not have diameter two but they do have small size and small maximal degree—subject to these
constraints, they are probably also optimal networks.

4.1. The Paley graph

Let q be a prime power and let GF(q) denote the @eld of order q. The Paley graph Pq has vertex
set GF(q) where q ≡ 1 (mod 4), two vertices being joined if their diAerence is a square. The Paley
graph is a pseudo-random graph with edge density 1=2. For the present purpose we show that Pq
achieves exactly the distance bound (†).
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Theorem 3. The Paley graph G=Pq is a regular graph with edge density p(G) = 1=2. It satis6es

r(G) = s(G) = 3 =
2
p

− 1:

The proof of this theorem is given in Section 6.1. Only the existence of a routing is proved.
However, in half the cases we can give a simple explicit routing for Pq; details are in Section 6.2.

Theorem 4. If q ≡ 1 (mod 8) there is an explicit routing for the Paley graph Pq which realises
r(G) = 3.

There are variants on the Paley graph with densities less than 1
2 . If q is a prime power with

q ≡ 1 (mod 2m), the graph Pmq with vertex set GF(q), in which a is joined to b if a − b is an
mth power, is a regular graph of density 1=m. (Thus P2

q =Pq.) In many cases, a theorem similar to
Theorem 4 can be proved, exhibiting a routing in which each edge lies in 2(m− 1) paths of length
two and so the bound (†) is achieved. Further information is given in Section 6.

4.2. The Erdős–R8enyi graph

The Erdős–R8enyi graph ERq (@rst described in [7]) has order n= q2 + q+ 1, where q is an odd
prime power. Its vertices are the points of the projective geometry PG(2; q) of dimension two over
GF(q). Two vertices (a; b; c) and (�; �; �) of ERq are adjacent if a� + b� + c�= 0. All the vertices
have degree q+1 except for the q+1 vertices (a; b; c) for which a2 +b2 +c2 = 0, which have degree
q; so e(ERq) = q(q + 1)2=2. In particular, the density of ERq is (q + 1)=n ≈ 1=

√
n.

A standard property of ERq is that every pair of vertices {a; b} is joined by exactly one path
of length two, with the exception of those (q + 1)q pairs where ab is an edge and a has degree
q, between which there is no path of length two. It follows that there is a unique routing R using
the edges and paths of length two. In R each edge lies in 2q− 1 paths except those edges incident
with vertices of degree q, which lie in 2q paths. So we obtain r(ERq) = s(ERq) = 2q. Now for a
graph of this density we know by (†) that s(G)¿ �2=p� − 1 = �2n=(q+ 1)� − 1 = 2q. Therefore the
Erdős–RJenyi graph is optimal for its density.

4.3. Sparser constructions

In order to reduce the density of our constructions below that of the Erdős–RJenyi graph we must
allow the maximum degree to rise. An e0cient construction was exhibited by BollobJas [1] (see
[2, p.178]). The graph ERq can be regarded as a pseudo-random subgraph of Kt , where t= |ERq|,
and BollobJas’s construction is in turn essentially a pseudo-random subgraph of a graph formed by
joining extra vertices to every vertex of Kt .

Let m¿ 0 be an integer. We de@ne the graph ERq(m) as follows. Begin with a copy of ERq. For
each vertex v∈ERq take a set {v1; : : : ; vm} of new vertices. These, together with V (ERq), will form
the vertex set of ERq(m); thus |ERq(m)|= (m+ 1)|ERq|= (m+ 1)(q2 + q+ 1). Join a new vertex vi
to u if vu is an edge of ERq. Moreover, if v is a vertex of degree q in ERq join vi to v; therefore
every new vertex has degree q+ 1. Hence e(ERq(m)) = e(ERq) +m|ERq|(q+ 1), and ERq(0) is just
ERq. Clearly �(ERq(m)) = (m+ 1)(q + 1).
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By our earlier remarks about ERq it can be seen that every pair of vertices has a common neighbour
if m¿ 1; in particular. ERq(m) has diameter two. Therefore, there is a routing in ERq(m) in which
no path has length greater than two. Given two vertices not both in the original ERq and not both
in the same set {v1; : : : ; vm} there is a unique shortest path (of length one or two) joining them; we
call these the “unique” paths. Two vertices in the original ERq will be connected by m or m+1 two
paths; two vertices in a set {v1; : : : ; vm} will be connected by q + 1 two paths. Now in any routing
by paths of length at most two, an edge not in ERq will lie in at most 1 + q(m + 1) unique paths.
However, the edges in ERq may lie in up to 2mq unique paths. Having inserted the unique paths, we
must now link up pairs of vertices in the sets {v1; : : : ; vm} and pairs of vertices within ERq. Pairs of
vertices in the sets {v1; : : : ; vm} can be linked by paths of length two which are spread around evenly
so that no edge lies in more than �(m+1)=(q+1)� paths. Non-adjacent pairs of vertices within ERq

can be linked by paths of length two which avoid the edges of ERq and such that each edge lies
in no more than �(q + 1)=m� paths. The same applies to adjacent pairs of vertices within ERq, but
it seems more natural to let them communicate via the edge joining them. This gives us a routing
with the property that many edges lie in at most 1 + q(m + 1) + �(m + 1)=(q + 1)� + �(q + 1)=m�
paths but some edges lie in up to 2mq + 1 paths. We could reduce this last expression to 2mq if
we did not require each adjacent pair of vertices to communicate via the edge joining them.

However, we can improve the situation dramatically by adding an extra edge in parallel with each
edge of ERq; call the resultant graph ER+

q (m). So e(ER+
q (m)) = e(ERq) + e(ERq(m)) =

(q + 1)(|ER+
q (m)| − 1). The density of ER+

q (m) is therefore p(ER+
q (m)) = 2(q + 1)=n where n=

|ER+
q (m)|, and the distance bound (†) gives r(G)¿ �2=p� − 1 = (m+ 1)q− 1 + �(m+ 1)=(q+ 1)�.

Now a routing for ER+
q (m) can be constructed in the same way as for ERq(m), except that the

paths through the edges of ERq can now be split between the double edges, and the paths joining
vertices of ERq can now be routed via the edges of ERq. This routing uses no edge more than
1 + q(m+ 1) + �(m+ 1)=(q + 1)� times, which is only two more than our lower bound.

4.4. A numerical example

As an illustration of the various constructions given above, Table 1 gives the parameters of some
diameter two optical networks with around 180 vertices, varying from the sparse to the dense. The
parameter �min is the theoretically smallest possible maximal degree in a diameter two graph with
the given order and size. The column labelled �2=p� − 1 is, of course, the distance bound (†).

It will be seen that these graphs oAer excellent (at times unbeatable) performance for their re-
spective densities. By comparison, an 8-regular graph G with 180 vertices would have 720 edges,
about the same as ER+

3 (13). Each vertex could reach at most 49 other vertices by paths of length
two, so s(G)¿ dist(G)¿ 60. Hence a 21% reduction (at least) in tra0c density can be achieved
by using ER+

3 (13) instead of a regular graph of similar size.

5. Planar networks

As well as the distance bound, another straightforward bound on the routing number is the bot-
tleneck bound. Let U be a subset of the vertex set V =V (G). In any routing of G there must be
at least |U ||V − U | communication paths which cross from U to V − U . Let e(U; V − U ) be the
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Table 1
Some optical networks and their e0ciency

G |G| e(G) �min �(G) �2=p� − 1 r(G)

ER3(13) 182 700 47 56 47 79
ER+

3 (13) 182 724 42 60 45 47
ER5(5) 186 1020 27 36 33 51
ER+

5 (5) 186 1110 23 42 30 32
ER13 183 1274 14 14 26 26
ER7(2) 171 1136 14 24 25 29
ER+

7 (2) 171 1360 16 32 21 23
P6

181 181 2715 30 30 11 11
P5

181 181 3258 36 36 9 9
P3

181 181 5430 60 60 5 5
P181 181 8145 90 90 3 3

number of edges between U and V − U . Then some edge is in at least |U ||V − U |=e(U; V − U )
paths and this number is thus a lower bound for s(G). We de@ne the bottleneck number b(G) of
the graph G by

b(G) = max
U⊂V (G)

|U ||V − U |
e(U; V − U )

:

In a graph of density p there must be a vertex u of degree at most p(n− 1). Taking U = {u} we
then have

r(G)¿ s(G)¿ b(G)¿
1
p
:

The networks described in Section 4 achieved bottleneck numbers of roughly 1=p. Since 1=p6
2=p − 1 it follows that in e0cient networks the bottleneck bound is never the deciding factor on
performance; the distance bound (†) is more restrictive.

However, it has often been noticed (for example, [19]) that for many existing networks d(G) is
much smaller than b(G) and b(G) = s(G) holds. We interpret this to mean that existing networks
are ine0cient, having some small localized area which creates a high bottleneck and dominates the
performance of the whole network.

Existing networks tend to be close to planar. The star K1; n−1 is planar and very e0cient but has a
vertex of high degree. If vertices of high degree are not permitted then planar graphs become very
ine0cient. A k-edge separator of a planar graph G of order n is de@ned to be a set of k edges
whose removal disconnects G and leaves no component of order larger than 2n=3. This means that
after the removal of these edges, there is a partition of V (G) into two disjoint sets A, B such that
n=36 |A|; |B|6 2n=3. Consequently, if G has a k-edge separator then b(G)¿ 2n2=9k. Diks, Djidjev,
Sykora and Vrto [6] showed that all simple planar graphs have small edge separators.

Proposition 5 (Diks, Djidjev, Sykora and Vrto [6]). Let G be a simple planar graph of order n
and maximum degree �. Then G has a 2

√
2�n-edge separator.
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Corollary 6. Let G be a simple planar graph of order n and maximum degree �. Then

r(G)¿ s(G)¿ b(G)¿
1
9

√
n3

2�
:

We take Corollary 6 to mean that planar networks, and probably also networks that are close to
planar, behave poorly. For example, a simple planar graph G with maximum degree �(G)6 8 will
have r(G)¿ n3=2=36. By comparison, a random 6-regular graph will have good bottleneck properties
(see [3]) and r(G) = O(n log n) can be obtained by the algorithm in [14].

6. Proofs of Theorems 3 and 4

We give here those proofs that were deferred during the main discussion.

6.1. Proof of Theorem 3

For an excellent discussion of @nite @elds see Lidl and Niederreiter [11]. The multiplicative
character " on GF(q) is de@ned by "(0) = 0; "(a) = 1 if a is a non-zero square in GF(q) and
"(a) =− 1 otherwise. If q ≡ 1 (mod 4) then −1 is a square in GF(q); so the Paley graph is de@ned
by making ab an edge whenever "(a − b) = 1. Let a∈GF(q) =V (G) and let d be the degree of
the vertex a. Then d − (q − 1 − d) =

∑
b "(a − b) =

∑
x "(x) = 0, where the sums run over all the

elements in GF(q). Therefore d= (q− 1)=2 which means that p(G) = 1
2 .

Let g be a primitive root of GF(q). We de@ne the antilogarithm function l on the group of
non-zero elements by l(gt) = t, where we take 16 t6 q − 1. Note that l(−1) = (q − 1)=2; so, for
each a, exactly one of l(a)6 (q− 1)=2 and l(−a)6 (q− 1)=2 holds.

We shall need a non-square n∈GF(q) such that n−1 is also a nonsquare. (Such an n can always
be found for let c be the number of common neighbours of the vertices 0 and 1. Since these vertices
are adjacent and both have degree (q−1)=2, they have c+1¿ 0 common nonneighbours. Take n to
be any common nonneighbour.) Now, for each ordered pair (a; b) of vertices we de@ne the vertex
v(a; b) = a + (b − a)n= b + (b − a)(n − 1). Notice that if ab is not an edge and v= v(a; b) then
"(v− a) = "(b− a) "(n) = 1 and "(v− b) = "(b− a) "(n− 1) = 1, so both av and bv are edges.

We now de@ne a routing R in G as follows. If ab is an edge the communication path P(a; b) is
just the edge ab. If ab is not an edge and l(a− b)6 (q− 1)=2 then P(a; b) is the path av(a; b)b of
length two. Since exactly one of l(a − b)6 (q − 1)=2 and l(b − a)6 (q − 1)=2 holds, the routing
is well de@ned.

Let us now check that s(G) = 3. We know by the distance bound (†) that s(G)¿ 3 so we need
only check that each edge cd of G lies in at most two paths of R of length two (the path of
length one consisting of cd itself being also in R). Suppose d= v(c; x) for some vertex x. Then
d= c + (x − c)n so x= c + (d − c)=n. Likewise if c= v(d; y) for some y then y=d + (c − d)=n.
Since c − x= − (d− y) exactly one of l(c − x)6 (q− 1)=2 and l(d− y)6 (q− 1)=2 holds, so R
contains exactly one of the paths cdx and dcy. Likewise there is exactly one path in R for which
either d= v(x′; c) or c= v(y′; d) for some vertices x′ and y′, the place of n in the argument being
taken by 1 − n.
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The routing R therefore contains exactly three paths through each edge. Since none of these paths
has length greater than two, Theorem 1 implies there is a wavelength assignment via R using only
three wavelengths and avoiding wavelength switching.

6.2. Proof of Theorem 4

We adopt the notation of the previous proof and make the extra constraint on the non-square n
that l(n) ≡ −l(n− 1) (mod 4). Such an n can always be found. For let k be the number of vertices
joined to 0 but not to g2. Since the vertices all have the same degree there are also exactly k
vertices joined to g2 but not to 0; thus

∑
x "(x)"(g2 − x) = − 2k + (q − 2 − 2k) = q − 2 − 4k. But∑

x "(x)"(a − x) = − 1 for any nonzero a (see [11]) so k = (q − 1)=4. Now GF(q) contains only
(q − 1)=4 elements v with l(v) ≡ 2 and one of these is g2; thus there must be some vertex z with
l(z) �≡ 2 which is joined to 0 but not to g2. Hence l(z) ≡ 0 and g2 − z=w where w is a nonsquare.
Take n= g2w−1 and n− 1 = zw−1; then l(n) ≡ −l(n− 1), as desired.

We now colour the paths of R as follows. All edges are coloured red. The path av(a; b)b with
l(a − b)6 (q − 1)=2 is coloured blue if l(a − b) ≡ 1 and green if l(a − b) ≡ −1 (remember that
l(a− b) is odd or else ab would be an edge).

Consider the paths of length two containing the edge cd. These paths are exactly one of cdx and
dcy where c − x= − (d − y) = (c − d)=n and one of cdx′ and dcy′ where c − x′ = − (d − y′) =
(c − d)=(1 − n). Now l(n) ≡ −l(n − 1), and l(−1) ≡ 0 (because q ≡ 1 (mod 8)), so one of these
paths will be blue and the other green, completing the proof.

As for the graphs Pmq , we remark that if numbers ni; 16 i¡m can be found such that l(ni) ≡
l(ni − 1) ≡ i (modm) then Pmq has diameter two and a routing in Pmq analogous to that for Pq can
be constructed in a manner similar to that above. It is straightforward to prove the existence of
the numbers ni for large q by making use of Weil’s estimates [18] for the number of solutions of
certain equations over GF(q), but for a given value of q it is much quicker to check the existence
by explicit calculation.
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