6 research outputs found

    On the Nonexistence of Almost Difference Sets Constructed from the Set of Octic Residues

    No full text

    Space programs summary no. 37-49, volume 3 for the period December 1, 1967 to January 30, 1968. Supporting research and advanced development

    Get PDF
    Space program research projects on systems analysis and engineering, telecommunications, guidance and control, propulsion, and data system

    Part I:

    Get PDF

    Decomposability of Tensors

    Get PDF
    Tensor decomposition is a relevant topic, both for theoretical and applied mathematics, due to its interdisciplinary nature, which ranges from multilinear algebra and algebraic geometry to numerical analysis, algebraic statistics, quantum physics, signal processing, artificial intelligence, etc. The starting point behind the study of a decomposition relies on the idea that knowledge of elementary components of a tensor is fundamental to implement procedures that are able to understand and efficiently handle the information that a tensor encodes. Recent advances were obtained with a systematic application of geometric methods: secant varieties, symmetries of special decompositions, and an analysis of the geometry of finite sets. Thanks to new applications of theoretic results, criteria for understanding when a given decomposition is minimal or unique have been introduced or significantly improved. New types of decompositions, whose elementary blocks can be chosen in a range of different possible models (e.g., Chow decompositions or mixed decompositions), are now systematically studied and produce deeper insights into this topic. The aim of this Special Issue is to collect papers that illustrate some directions in which recent researches move, as well as to provide a wide overview of several new approaches to the problem of tensor decomposition
    corecore