257 research outputs found

    Survey on Signal Processing for GNSS under Ionospheric Scintillation: Detection, Monitoring, and Mitigation

    Get PDF
    Ionospheric scintillation is the physical phenomena affecting radio waves coming from the space through the ionosphere. Such disturbance is caused by ionospheric electron density irregularities and is a major threat in Global Navigation Satellite Systems (GNSS). From a signal processing perspective, scintillation is one of the most challenging propagation scenarios, particularly affecting high-precision GNSS receivers and safety critical applications where accuracy, availability, continuity and integrity are mandatory. Under scintillation, GNSS signals are affected by amplitude and phase variations, which mainly compromise the synchronization stage of the receiver. To counteract these effects, one must resort to advanced signal processing techniques such as adaptive/robust methods, machine learning or parameter estimation. This contribution reviews the signal processing landscape in GNSS receivers, with emphasis on different detection, monitoring and mitigation problems. New results using real data are provided to support the discussion. To conclude, future perspectives of interest to the GNSS community are discussed

    Fuzzy Logic-based Adaptive Extended Kalman Filter Algorithm for GNSS Receivers

    Get PDF
    Designing robust carrier tracking algorithms that are operable in strident environmental conditions for global navigation satellite systems (GNSS) receivers is the discern task. Major contribution in weakening the GNSS signals are ionospheric scintillations. The effect of scintillation can be known by amplitude scintillation index S4 and phase scintillation index sf parameters. The proposed fuzzy logic based adaptive extended Kalman filter (AEKF) method helps in modelling the signal amplitude and phase dynamically by Auto-Regressive Exogenous (ARX) analysis using Sugeno fuzzy logic inference system. The algorithm gave good performance evaluation for synthetic Cornell scintillation monitor (CSM) data and real-time strong scintillated PRN 12 L1 C/A data on October 24th, 2012 around 21:30 h, Brazil local time collected by GNSS software navigation receiver (GSNR’x). Fuzzy logic algorithm is implemented for selecting the ARX orders based on estimated amplitude and phase ionospheric scintillation observations. Fuzzy based AEKF algorithm has the capability to mitigate ionospheric scintillations under both geomagnetic quiet and disturbed conditions

    Software-defined radio technology for GNSS scintillation analysis: bring Antarctica to the lab

    Get PDF
    Global navigation satellite systems (GNSSs) are widely used to support logistics, scientific operations, and to monitor the polar ionosphere indirectly, which is a region characterized by strong phase scintillation events that severely affect the quality and reliability of received signals. Professional commercial GNSS receivers are widely used for scintillation monitoring; on the contrary, custom-designed solutions based on data grabbers and software receivers constitute novelty. The latter enables a higher level of flexibility and configurability, which is important when working in remote and severe environments. We describe the scientific, technological, and logistical challenges of installing an ionospheric monitoring station in Antarctica, based on a multi-constellation and multi-frequency GNSS data grabber and a software-defined radio receiver. Having access to the full receiver chain and to intermediate signal processing stages allows a deep analysis of the impact of scintillation and, in turn, a better understanding of the physical phenomenon. The possibility to process high-resolution raw intermediate frequency samples of the signal enables not only the computation of scintillation indexes with the same quality as professional devices but also the design and test of innovative receiver architectures and algorithms. Furthermore, the record and replay approach offers the possibility to process in the lab the signals captured on site, with high fidelity level. It is like being in Antarctica again, but with an unlimited set of receivers and higher computational, storage, and bandwidth resources. The main advantages and disadvantages of this approach are analyzed. Examples of monitoring results are reported, confirming the monitoring capabilities, showing the good agreement with commercial receiver outputs and confirming the validity of post-processing and re-play operations

    Estimation Techniques and Mitigation Tools for Ionospheric effects on GNSS Receivers

    Get PDF
    Navigation is defined as the science of getting a craft or person from one place to another. The development of radio in the past century brought fort new navigation aids that enabled users, or rather their receivers, to compute their position with the help of signals from one or more radio-navigation system . The U.S. Global Positioning System (GPS) was envisioned as a satellite system for three-dimensional position and velocity determination fulfilling the following key attributes: global coverage, continuous/all weather operation, ability to serve high-dynamic platforms, and high accuracy. It represents the fruition of several technologies, which matured and came together in the second half of the 20th century. In particular, stable space-born platforms, ultra-stable atomic frequency standards, spread spectrum signaling, and microelectronics are the key developments in the realization and success of GPS. While GPS was under development, the Soviet Union undertook to develop a similar system called GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (GLONASS). Both GLONASS and GPS were designed primarily for the military, but have transitioned in the past decades towards providing civilian and Safety-of-Life services as well. Other Global Navigation Satellite Systems (GNSS) are now being developed and deployed by governments, international consortia, and commercial interests. Among these are the European system Galileo and the Chinese system Beidou. Other regional systems are the Japanese Quasi-Zenith Satellite System and the Indian Gagan. GNSS have become a crucial component in countless modern systems, e.g. in telecommunication, navigation, remote sensing, precise agriculture, aviation and timing. One of the main threats to the reliable and safe operation of GNSS are the variable propagation conditions encountered by GNSS signals as they pass through the upper atmosphere of the Earth. In particular, irregular concentration of electrons in the ionosphere induce fast fluctuations in the amplitude and phase of GNSS signals called scintillations. The latter can greatly degrade the performance of GNSS receivers, with consequent economical impacts on service providers and users of high performance applications. New GNSS navigation signals and codes are expected to help mitigate such effects, although to what degree is still unknown. Furthermore, these new technologies will only come on line incrementally over the next decade as new GNSS satellites become operational. In the meantime, GPS users who need high performance navigation solution, e.g., offshore drilling companies, might be forced to postpone operations for which precision position knowledge is required until the ionospheric disturbances are over. For this reason continuous monitoring of scintillations has become a priority in order to try to predict its occurrence. Indeed, it is a growing scientific and industrial activity. However, Radio Frequency (RF) Interference from other telecommunication systems might threaten the monitoring of scintillation activity. Currently, the majority of the GNSS based application are highly exposed to unintentional or intentional interference issues. The extremely weak power of the GNSS signals, which is actually completely buried in the noise floor at the user receiver antenna level, puts interference among the external error contributions that most degrade GNSS performance. It is then of interest to study the effects these external systems may have on the estimation of ionosphere activity with GNSS. In this dissertation, we investigate the effect of propagation issues in GNSS, focusing on scintillations, interference and the joint effect of the two phenomena

    Investigation of low latitude scintillations in Brazil within the cigala project

    Get PDF
    Ionospheric scintillations are fluctuations in the phase and amplitude of the signals from GNSS satellites occurring when they cross regions of electron density irregularities in the ionosphere. Such disturbances can cause serious degradation on GNSS system performance, including integrity, accuracy and availability. The two indices internationally adopted to characterize ionospheric scintillations are: the amplitude scintillation index, S4, which is the standard deviation of the received power normalized by its mean value, and the phase scintillation index, σΦ, which is the standard deviation of the de-trended carrier phase. At low latitudes scintillations occur very frequently and can be intense. This is because the low latitudes show a characteristic feature of the plasma density, known as the equatorial anomaly, EA, for which a plasma density enhancement is produced and seen as crests on either side of the magnetic equator. It is a region in which the electron density is considerably high and inhomogeneous, producing ionospheric irregularities causing scintillations. The upcoming solar maximum, which is expected to reach its peak around May 2013, occurs at a time when our reliance on high-precision GNSS (such as GPS, GLONASS and the forthcoming GALILEO) has reached unprecedented proportions. Understanding and monitoring of scintillations are essential, so that warnings and forecast information can be made available to GNSS end users, either for global system or local augmentation network administrators in order to guarantee the necessary levels of accuracy, integrity and availability of high precision and/or safety-of-life applications. Especially when facing severe geospatial perturbations, receiver-level mitigations are also needed to minimize adverse effects on satellite signals tracking availability and accuracy. In this context, the challenge of the CIGALA (Concept for Ionospheric scintillation mitiGAtion for professional GNSS in Latin America) project, co-funded by the European GNSS Agency (GSA) through the European 7th Framework Program, is to understand the causes of ionospheric disturbances and model their effects in order to develop novel counter-measure techniques to be implemented in professional multi-frequency GNSS receivers. This paper describes the scientific advancements made within the project to understand and characterize ionospheric scintillation in Brazil by means of historical and new datasets

    Analysis and Characterization of an Unclassified RFI Affecting Ionospheric Amplitude Scintillation Index over the Mediterranean Area

    Get PDF
    Radio Frequency (RF) signals transmitted by Global Navigation Satellite Systems (GNSS) are exploited as signals of opportunity in many scientific activities, ranging from sensing waterways and humidity of the terrain to the monitoring of the ionosphere. The latter can be pursued by processing the GNSS signals through dedicated ground-based monitoring equipment, such as the GNSS Ionospheric Scintillation and Total Electron Content Monitoring (GISTM) receivers. Nonetheless, GNSS signals are susceptible to intentional or unintentional RF interferences (RFIs), which may alter the calculation of the scintillation indices, thus compromising the quality of the scientific data and the reliability of the derived space weather monitoring products. Upon the observation of anomalous scintillation indices computed by a GISTM receiver in the Mediterranean area, the study presents the results of the analysis and characterization of a deliberate, unclassified interferer acting on the L1/E1 GNSS signal bands, observed and captured through an experimental, software defined radio setup. The paper also highlights the adverse impacts of the interferer on the amplitude scintillation indices employed in scientific investigations, and presents a methodology to discriminate among regular and corrupted scintillation data. To support further investigations, a dataset of baseband signals samples affected by the RFI is available at IEEE DataPort

    Detection of GNSS Ionospheric Scintillations based on Machine Learning Decision Tree

    Get PDF
    This paper proposes a methodology for automatic, accurate and early detection of amplitude ionospheric scintillation events, based on machine learning algorithms, applied on big sets of 50 Hz post-correlation data provided by a GNSS receiver. Experimental results on real data show that this approach can considerably improve traditional methods, reaching a detection accuracy of 98%, very close to human-driven manual classification. Moreover, the detection responsiveness is enhanced, enabling early scintillation alerts

    Ionospheric scintillation monitoring and modelling

    Get PDF
    This paper presents a review of the ionospheric scintillation monitoring and modelling by the European groups involved in COST 296. Several of these groups have organized scintillation measurement campaigns at low and high latitudes. Some characteristic results obtained from the measured data are presented. The paper also addresses the modeling activities: four models, based on phase screen techniques, with different options and application domains are detailed. Finally some new trends for research topics are given. This includes the wavelet analysis, the high latitudes analysis, the construction of scintillation maps and the mitigation techniques

    On the Mitigation of Ionospheric Scintillation in Advanced GNSS Receivers

    Get PDF
    Ionospheric scintillation is one of the major threats and most challenging propagation scenarios affecting Global Navigation Satellite Systems (GNSS) and related applications. The fact that this phenomenon causes severe degradations only in equatorial and high latitude regions has led to very few contributions dealing with the fundamental scintillation mitigation problem, being of paramount importance in safety critical applications and advanced integrity receivers. The goal of this paper is twofold, first to bring together the most relevant contributions on GNSS receiver design under scintillation conditions, and then, to propose a new GNSS carrier tracking framework and scintillation mitigation methodology. Scintillation complex gain components are modeled as AR processes and embedded into the state-space formulation, providing the filter the capability to distinguish between dynamics and phase scintillation contributions. In addition, the actual need of robust solutions is solved by using an adaptive filtering approach and directly operating with the baseband received signal. Simulation results, using both synthetic and real scintillation data, are provided to support the theoretical discussion and to show the performance improvements of such new approach
    • …
    corecore