366,768 research outputs found

    Some results on Minimum Consistent Subsets of Trees

    Full text link
    For a graph G = (V,E) where each vertex is coloured by one of k colours, consider a subset C of V such that for each vertex v in V\C, its set of nearest neighbours in C contains at least one vertex of the same colour as v. Such a C is called a consistent subset (CS). Computing a consistent subset of the minimum size is called the Minimum Consistent Subset problem (MCS). MCS is known to be NP-complete for planar graphs. We propose a polynomial-time algorithm for finding a minimum consistent subset of a k-chromatic spider graph when k is a constant. We also show MCS remains NP-complete on trees

    O(log2k/loglogk)O(\log^2k/\log\log{k})-Approximation Algorithm for Directed Steiner Tree: A Tight Quasi-Polynomial-Time Algorithm

    Get PDF
    In the Directed Steiner Tree (DST) problem we are given an nn-vertex directed edge-weighted graph, a root rr, and a collection of kk terminal nodes. Our goal is to find a minimum-cost arborescence that contains a directed path from rr to every terminal. We present an O(log2k/loglogk)O(\log^2 k/\log\log{k})-approximation algorithm for DST that runs in quasi-polynomial-time. By adjusting the parameters in the hardness result of Halperin and Krauthgamer, we show the matching lower bound of Ω(log2k/loglogk)\Omega(\log^2{k}/\log\log{k}) for the class of quasi-polynomial-time algorithms. This is the first improvement on the DST problem since the classical quasi-polynomial-time O(log3k)O(\log^3 k) approximation algorithm by Charikar et al. (The paper erroneously claims an O(log2k)O(\log^2k) approximation due to a mistake in prior work.) Our approach is based on two main ingredients. First, we derive an approximation preserving reduction to the Label-Consistent Subtree (LCST) problem. The LCST instance has quasi-polynomial size and logarithmic height. We remark that, in contrast, Zelikovsky's heigh-reduction theorem used in all prior work on DST achieves a reduction to a tree instance of the related Group Steiner Tree (GST) problem of similar height, however losing a logarithmic factor in the approximation ratio. Our second ingredient is an LP-rounding algorithm to approximately solve LCST instances, which is inspired by the framework developed by Rothvo{\ss}. We consider a Sherali-Adams lifting of a proper LP relaxation of LCST. Our rounding algorithm proceeds level by level from the root to the leaves, rounding and conditioning each time on a proper subset of label variables. A small enough (namely, polylogarithmic) number of Sherali-Adams lifting levels is sufficient to condition up to the leaves

    From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back

    Get PDF
    In this work we establish and investigate connections between causes for query answers in databases, database repairs wrt. denial constraints, and consistency-based diagnosis. The first two are relatively new research areas in databases, and the third one is an established subject in knowledge representation. We show how to obtain database repairs from causes, and the other way around. Causality problems are formulated as diagnosis problems, and the diagnoses provide causes and their responsibilities. The vast body of research on database repairs can be applied to the newer problems of computing actual causes for query answers and their responsibilities. These connections, which are interesting per se, allow us, after a transition -inspired by consistency-based diagnosis- to computational problems on hitting sets and vertex covers in hypergraphs, to obtain several new algorithmic and complexity results for database causality.Comment: To appear in Theory of Computing Systems. By invitation to special issue with extended papers from ICDT 2015 (paper arXiv:1412.4311

    Locally compact, ω1\omega_1-compact spaces

    Full text link
    An ω1\omega_1-compact space is a space in which every closed discrete subspace is countable. We give various general conditions under which a locally compact, ω1\omega_1-compact space is σ\sigma-countably compact, i.e., the union of countably many countably compact spaces. These conditions involve very elementary properties.Comment: 21 pages, submitted, comments are welcom

    Transiently Consistent SDN Updates: Being Greedy is Hard

    Full text link
    The software-defined networking paradigm introduces interesting opportunities to operate networks in a more flexible, optimized, yet formally verifiable manner. Despite the logically centralized control, however, a Software-Defined Network (SDN) is still a distributed system, with inherent delays between the switches and the controller. Especially the problem of changing network configurations in a consistent manner, also known as the consistent network update problem, has received much attention over the last years. In particular, it has been shown that there exists an inherent tradeoff between update consistency and speed. This paper revisits the problem of updating an SDN in a transiently consistent, loop-free manner. First, we rigorously prove that computing a maximum (greedy) loop-free network update is generally NP-hard; this result has implications for the classic maximum acyclic subgraph problem (the dual feedback arc set problem) as well. Second, we show that for special problem instances, fast and good approximation algorithms exist
    corecore