68,098 research outputs found

    The matroid structure of representative triple sets and triple-closure computation

    Get PDF
    The closure cl (R) of a consistent set R of triples (rooted binary trees on three leaves) provides essential information about tree-like relations that are shown by any supertree that displays all triples in . In this contribution, we are concerned with representative triple sets, that is, subsets R' of R with cl (R') = cl . In this case, R' still contains all information on the tree structure implied by R, although R' might be significantly smaller. We show that representative triple sets that are minimal w.r.t. inclusion form the basis of a matroid. This in turn implies that minimal representative triple sets also have minimum cardinality. In particular, the matroid structure can be used to show that minimum representative triple sets can be computed in polynomial time with a simple greedy approach. For a given triple set R that “identifies” a tree, we provide an exact value for the cardinality of its minimum representative triple sets. In addition, we utilize the latter results to provide a novel and efficient method to compute the closure cl (R) of a consistent triple set R that improves the time complexity (R Lr 4) of the currently fastest known method proposed by Bryant and Steel (1995). In particular, if a minimum representative triple set for R is given, it can be shown that the time complexity to compute cl (R) can be improved by a factor up to R Lr . As it turns out, collections of quartets (unrooted binary trees on four leaves) do not provide a matroid structure, in general

    Dynamics of surface diffeomorphisms relative to homoclinic and heteroclinic orbits

    Get PDF
    The Nielsen-Thurston theory of surface diffeomorphisms shows that useful dynamical information can be obtained about a surface diffeomorphism from a finite collection of periodic orbits.In this paper, we extend these results to homoclinic and heteroclinic orbits of saddle points. These orbits are most readily computed and studied as intersections of unstable and stable manifolds comprising homoclinic or heteroclinic tangles in the surface. We show how to compute a map of a one-dimensional space similar to a train-track which represents the isotopy-stable dynamics of the surface diffeomorphism relative to a tangle. All orbits of this one-dimensional representative are globally shadowed by orbits of the surface diffeomorphism, and periodic, homoclinic and heteroclinic orbits of the one-dimensional representative are shadowed by similar orbits in the surface.By constructing suitable surface diffeomorphisms, we prove that these results are optimal in the sense that the topological entropy of the one-dimensional representative is the greatest lower bound for the entropies of diffeomorphisms in the isotopy class.Comment: Version submitted to "Dynamical Systems: An International Journal" Section 7 has been further revised; the method for pA maps is new. Notation has been standardised throughou

    Relative polynomial closure and monadically Krull monoids of integer-valued polynomials

    Full text link
    Let D be a Krull domain and Int(D) the ring of integer-valued polynomials on D. For any f in Int(D), we explicitly construct a divisor homomorphism from [f], the divisor-closed submonoid of Int(D) generated by f, to a finite sum of copies of (N_0,+). This implies that [f] is a Krull monoid. For V a discrete valuation domain, we give explicit divisor theories of various submonoids of Int(V). In the process, we modify the concept of polynomial closure in such a way that every subset of D has a finite polynomially dense subset. The results generalize to Int(S,V), the ring of integer-valued polynomials on a subset, provided S doesn't have isolated points in v-adic topology.Comment: 12 pages; v.2 contains corrections, in that some necessary conditions on those subsets S, for which we consider integer-valued polynomials on subsets, are impose

    Double cosets in free groups

    Full text link
    In this paper we study double cosets of finite rank free groups. We focus our attention on cancellation types in double cosets and their formal language properties.Comment: Minor change

    Redundancy, Deduction Schemes, and Minimum-Size Bases for Association Rules

    Full text link
    Association rules are among the most widely employed data analysis methods in the field of Data Mining. An association rule is a form of partial implication between two sets of binary variables. In the most common approach, association rules are parameterized by a lower bound on their confidence, which is the empirical conditional probability of their consequent given the antecedent, and/or by some other parameter bounds such as "support" or deviation from independence. We study here notions of redundancy among association rules from a fundamental perspective. We see each transaction in a dataset as an interpretation (or model) in the propositional logic sense, and consider existing notions of redundancy, that is, of logical entailment, among association rules, of the form "any dataset in which this first rule holds must obey also that second rule, therefore the second is redundant". We discuss several existing alternative definitions of redundancy between association rules and provide new characterizations and relationships among them. We show that the main alternatives we discuss correspond actually to just two variants, which differ in the treatment of full-confidence implications. For each of these two notions of redundancy, we provide a sound and complete deduction calculus, and we show how to construct complete bases (that is, axiomatizations) of absolutely minimum size in terms of the number of rules. We explore finally an approach to redundancy with respect to several association rules, and fully characterize its simplest case of two partial premises.Comment: LMCS accepted pape

    On maximal chain subgraphs and covers of bipartite graphs

    Get PDF
    In this paper, we address three related problems. One is the enumeration of all the maximal edge induced chain subgraphs of a bipartite graph, for which we provide a polynomial delay algorithm. We give bounds on the number of maximal chain subgraphs for a bipartite graph and use them to establish the input-sensitive complexity of the enumeration problem. The second problem we treat is the one of finding the minimum number of chain subgraphs needed to cover all the edges a bipartite graph. For this we provide an exact exponential algorithm with a non trivial complexity. Finally, we approach the problem of enumerating all minimal chain subgraph covers of a bipartite graph and show that it can be solved in quasi-polynomial time
    • …
    corecore