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We show how to obtain information about the dynamics of a two-dimensional discrete-time
system from its homoclinic and heteroclinic orbits. The results obtained are based on the theory
of trellises, which comprise finite-length subsets of the stable and unstable manifolds of a
collection of saddle periodic orbits. For any collection of homoclinic or heteroclinic orbits, we
show how to associate a canonical trellis type which describes the orbits. Given a trellis type,
we show how to compute a graph representative which gives a combinatorial invariant of the
trellis type. The orbits of the graph representative represent the dynamics forced by the
homoclinic/heteroclinic orbits in the sense that every orbit of the graph representative is globally
shadowed by some orbit of the system, and periodic, homoclinic/heteroclinic orbits of the graph
representative are shadowed by similar orbits.
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Abstract

We show how to obtain information about the dynamics of a two-dimensional
discrete-time system from its homoclinic and heteroclinic orbits. The results ob-
tained are based on the theory of trellises, which comprise finite-length subsets of
the stable and unstable manifolds of a collection of saddle periodic orbits. For any
collection of homoclinic or heteroclinic orbits, we show how to associate a canonical
trellis type which describes the orbits. Given a trellis type, we show how to com-
pute a graph representative which gives a combinatorial invariant of the trellis type.
The orbits of the graph representative represent the dynamics forced by the homo-
clinic/heteroclinic orbits in the sense that every orbit of the graph representative is
globally shadowed by some orbit of the system, and periodic, homoclinic/heteroclinic
orbits of the graph representative are shadowed by similar orbits.

Mathematics subject classification: Primary: 37E30. Secondary: 37B10, 37C27, 37E25.

1 Introduction

The importance of homoclinic orbits in dynamical systems theory was first realised by
Poincaré [Poi99], who showed that the presence of a homoclinic tangle in the three-
body problem was enough to show that the system was non-integrable. More work on
homoclinic tangles was later undertaken by Birkhoff [Bir49], but modern interest was
inspired by Smale, who showed that any system with a transverse homoclinic point must
have a horseshoe in some iterate [Sma63]. In this paper, we extend the local analysis
of Smale to obtain a global understanding of the dynamics for diffeomorphisms in two
dimensions. The analysis depends on constructing a graph representative of the system,

∗This work was partially funded by Leverhulme Special Research Fellowship SRF/4/9900172
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from which we obtain information about the dynamics in terms of symbolic dynamics
relative to a Markov partition and global shadowing.

The use of Markov partitions to give symbolic dynamics is a fundamental tool in dy-
namical systems theory. For uniformly-hyperbolic systems, the dynamics is described
completely by the symbolics, but for non-uniformly hyperbolic systems, the Markov par-
tition typically only gives a lower bound for the dynamics. From this, we can often deduce
information on the forcing relation, which describes when the presence of a particular ge-
ometric structure implies the existence of another structure. Sharkovskii’s theorem for
interval maps is a classic example of a forcing result: a total ordering � of the natural
numbers is given such that the presence of a periodic orbit of period p forces periodic
orbits of all periods q with p � q. Sharkovskii’s theorem can be strengthened to consider
the ordering of points on the orbit, and this gives a complete (though less elegant) de-
scription of the forcing relation for periodic orbits of interval maps. Interval maps can be
studied by elementary methods, but obtaining symbolic dynamics for more complicated
classes of system typically requires the use of some topological index theory, such as the
fixed point index [Fri83, Jia93] or the Conley index [Con78].

The theory of isotopy classes of surface homeomorphisms is known as Nielsen-Thurston
theory [CB88], and extends in a straightforward way to a theory of isotopy classes relative
to periodic orbits. Here, the period is no longer a useful characterisation of the orbit;
instead, we need to consider the braid type which is the conjugacy class of isotopy classes
relative to the orbit in question. Just as for periodic orbits of interval maps, orbits of
different periods may have different braid types. For each braid type there is a canonical
representative such that a braid type BT1 forces BT2 if and only if the Thurston minimal
representative of BT1 contains an orbit of type BT2. The forcing relation on braid types
is a partial order [Boy92]. A Thurston minimal representative has the minimum number
of periodic points of any period [BK82, JG93, Boy99], and minimal topological entropy
in the isotopy class. The most interesting case is when the canonical representative
is pseudo-Anosov. A pseudo-Anosov map preserves a pair of transverse foliations, the
leaves of the stable foliation being uniformly contracted and the unstable foliation being
uniformly expanded. The orbits of a pseudo-Anosov map persist under isotopy [Fat90]
and are globally shadowed by those of any other homeomorphism in the isotopy class
[Han85]. The dynamics of a pseudo-Anosov map therefore have similar properties to those
of uniformly hyperbolic diffeomorphisms, except that the persistence of the dynamics
holds for arbitrarily large perturbations. Many of the above-mentioned results can be
found in the survey article [Boy94].

Thurston’s proof of the classification theorem [Thu76, Soc79] was non-constructive, and
thus of little use in actually determining the forcing relation. The main breakthrough was
an algorithm of Bestvina and Handel [BH92] for computing train tracks for automorphisms
of free groups, which was adapted to the case of surface homeomorphisms by Franks and
Misiurewicz [FM93] and Bestvina and Handel [BH95]. An alternative algorithm for the
case of homeomorphisms of the disc was given by Los [Los93]. A description of the moves
of this algorithm with an emphasis on implementation details was given by Keil [Kei97].
Even so, the global properties of the forcing relation are still only partially understood
and this is an active area of research, especially in the case of the orbits of the Smale
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horseshoe map [dCH02].

A more challenging problem is to consider the dynamics of surface diffeomorphisms rel-
ative to homoclinic and heteroclinic orbits of tangles. The standard results of Poincaré
and Smale for transverse homoclinic points have since been extended to topologically
transverse intersections which are not geometrically transverse [BW95, Ray98], and a
great deal is known about bifurcations near a homoclinic tangency [New80, MV93]. The
global dynamics and the forcing relation have been previously considered by McRobie and
Thompson [MT94], who carried out a detailed study of the spiral 3-shoe, by Rom-Kedar
[RK94], who obtained results on entropy bounds and homoclinic forcing using a topolog-
ical approximation method, and by Easton [Eas98]. Algorithms for computing dynamics
forced by homoclinic orbits were recently given independently by Handel [Han99] and
Hulme [Hul00]. Homoclinic tangles have been used by Christiansen and Politi [CP96] to
compute generating partitions for symbolic dynamics. Orbits of the Hénon map have also
been obtained using continuation methods by Sterling, Dullin and Meiss [SRD99].

The aim of this paper is to give a complete and general theoretical basis for describing
and computing the dynamics forced by a homoclinic or heteroclinic tangle. The results
are a completion of the theory begun in [Col99], and are related to the pruning theory of
de Carvalho [dC99]. Instead of considering an entire tangle, which consists of immersed
curves of infinite length, we only consider a subset consisting of curves of finite length.
We call such a figure a trellis, after Birkhoff [Bir49] and Easton [Eas86]. Aside from being
easier to work with, trellises have the advantage that there exist a number of algorithms
to compute them to a very high degree of accuracy, such as those of Simo [Sim89] and
Krauskopf and Osinga [KO98]. We therefore obtain results which can be directly applied
to physically-relevant systems.

In Section 2 we give a definition of trellises, which constitute the main object of study, and
introduce terminology to describe important features of their geometry. We also introduce
the related concepts of biasymptotic orbits and controlled graphs, which also play an
important role in this paper. Finally, we discuss reducibility of surface diffeomorphisms
and graph maps in the context of homoclinic and heteroclinic dynamics.

In Section 3, we we show how to relate a collection of homoclinic and/or heteroclinic
orbits to a canonical trellis type forcing the same dynamics, thus unifying the viewpoints
of homoclinic/heteroclinic orbits and tangles. This result can be applied to classify ho-
moclinic orbits by braid type. We then show how to extend trellises without increasing
the associated dynamics, and give results concerning the relationship between extensions
and reducibility.

In Section 4, we show how to associate a graph representative to a given trellis map,
in much the same way that a pseudo-Anosov braid type gives rise to a train track. We
give and algorithm modelled on the Bestvina-Handel algorithm to compute the graph
representative. Following an idea of Los [Los96], we replace the valence-2 homotopy by a
valence-3 homotopy which does not require a global knowledge of the map. Unfortunately,
the entropy may increase during this move, so we give a new analysis based on dynamical
zeta functions to show that the algorithm terminates. We also unify the process of absorb-
ing into the peripheral subgraph with the main algorithm, which also simplifies matters
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somewhat. As with the Bestvina-Handel algorithm, reductions are obtained and can be
dealt with accordingly. Finally, we give a simplified algorithm for braid types based on
our analysis of the algorithm for trellises. The graph representative we obtain is unique
(unlike a train track) and gives a convenient way of specifying the trellis. From this, we
also obtain a canonical graph representative for a homoclinic orbit.

In Section 5, we discuss how the dynamics of the graph representative model the dynamics
of the surface diffeomorphism. The existence of periodic orbits was given in [Col99]; the
existence of other orbits follows by taking limits. In particular, these results show that
the topological entropy of the graph representative is a lower bound for the topological
entropy of the surface diffeomorphism. Orbits are related by global shadowing, a relation
introduced by Katok, though here we give a new definition more in keeping with the
spirit of our topological analysis. Periodic orbits which globally shadow each other have
the same braid type, so we obtain information about the braid types of the orbits of
the system. Related results on braid types and strong Nielsen equivalence can be found
in [BH99]. Finally, we show be a careful construction that homoclinic and heteroclinic
orbits of the graph map are shadowed by homoclinic and heteroclinic orbits of the surface
diffeomorphism.

Many of the results contained in this paper are based on the Nielsen theory of self-
maps of a topological pair, as developed in [Col01] based on standard Nielsen fixed-point
theory [Bro71, Jia83]. The Nielsen equivalence relation for maps of pairs gives a relation
between periodic points of the same (not necessarily least) period, and a Nielsen class
equivalence class is essential if it has non-zero Lefschetz index. Essential Nielsen classes
can be continued under homotopy, and hence a homotopy between two maps induces a
correspondence between their essential Nielsen classes. The Nielsen entropy hniel is given
by the growth rate of the number of essential Nielsen classes, and is a lower estimate for
the topological entropy. In the relative case, each Nielsen class is either Nielsen related
to the invariant set, or has a well defined itinerary in terms of the components of the
complement of the invariant set which is preserved by homotopy.

Another key ingredient is the study of the intersections of homotopy and isotopy classes
of embedded curves. We are particularly concerned with curves that intersect each other
a minimum possible number of times, and we call an intersection of two curves essential
if it cannot be removed by a homotopy. The results we need are intuitively obvious “folk
theorems,” and are used without proof.

2 Trellises, biasymptotic orbits and controlled graphs

In this section we define the various geometric structures which constitute the main objects
of study. We introduce the notion of trellis and trellis type, and relate these to the well-
known notion of homoclinic/heteroclinic orbit and tangle. We also give a number of
definitions which allow us to describe some of the basic properties of trellises. We also
review the definitions of graphs and thick graphs (or fibered surfaces) that we will use. We
discuss reducibility of trellis mapping classes, and explain how this differs from reducibility
of mapping classes relative to periodic orbits.
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2.1 Tangles and Trellises

A tangle is the figure formed by the stable and unstable manifolds of a collection of
periodic saddle orbits.

Definition 2.1 (Tangle) Let f be a diffeomorphism of a surface M with a finite invari-
ant set P of hyperbolic saddle points. Let W S(f ; P ) be the stable set of P , and W U (f ; P )
the unstable set of P . The pair W = (W U (f ; P ),W S(f ; P )) is a tangle for f . If P consists
of a single point, then W is a homoclinic tangle, otherwise W is a heteroclinic tangle.

We use the notation W U/S in statements which hold for both stable and unstable mani-
folds. If the diffeomorphism f under consideration is clear from the context, we abbreviate
WU/S(f ; P ) to W U/S(P ), and if the periodic point set P is also clear, we simply write
WU/S.

If p is a point of P , then the stable and unstable curves passing through p are denoted
W S(f ; p) and W U (f ; p) respectively. We use the obvious notation for intervals of W U/S:
The closed interval in W U/S with endpoints a and b is denoted W U/S[a, b] and the open
interval is denoted W U/S(a, b). Half-open intervals are denoted W U/S[a, b) and W U/S(a, b].
An open interval is a branch it is component of W U/S(P ) \ P . In general, a branch will
be an immersed curve with an initial point p ∈ P , but no final point. We shall denote a
branch at p containing a point b as W U/S(p, b,∞).

An intersection point of a tangle W is a a point in W U ∩ W S, and is a point of a
homoclinic or heteroclinic orbit. An intersection point q ∈ W U (p1)∩WU (p2) is a primary
intersection point or pip if W U (p1, q) and W S(q, p2) are disjoint [Wig91]. An intersection
point q is transverse or tangential according to whether W U and W S cross transversely
or tangentially at q

There are a number of difficulties in working with tangles directly. These are due to
the fact that if any branch intersects another, then it will be an immersed, rather then
embedded, curve. The geometry of such a curve is extremely complicated, as is the
global topology of the tangle. Further, since branches may have infinite length, tangles
are impossible to compute directly. Instead, we work with subsets of tangles known as
trellises, for which the stable and unstable curves have finite lengths.

Definition 2.2 (Trellis) Let f be a diffeomorphism of a surface M with a finite invariant
set P of hyperbolic saddle points. A trellis for f is a pair T = (T U , T S), where TU and
T S are subsets of W U (f ; P ) and W S(f ; P ) respectively such that:

1. TU and T S both consist of finitely many compact intervals with non-empty interiors,

2. f(TU ) ⊃ TU and f(T S) ⊂ T S.

We denote the set of periodic points of T by T P , and the set of intersections of T U and
T S by T V . Note that T U and T S are sets of curves, but T P and T V are sets of points.

We write (f ; T ) to denote the trellis mapping pair consisting of a diffeomorphism f and
a trellis T for f . The restriction of f to f−1(TU ) ∪ T S has image T U ∪ f(T S), and may
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be called a (restricted) trellis map. In this paper, however, we shall always be concerned
with maps defined on the whole of the surface M .

There are two important relations between pairs (f ; T ), namely isotopy and conjugacy.
Note that in the definition of isotopy, we take isotopies through arbitrary diffeomorphisms;
in particular, ft need not fix the boundary of M pointwise.

Definition 2.3 (Isotopy and conjugacy) Let f0 and f1 be diffeomorphisms with trel-
lises T0 and T1 respectively. Then (f0; T0) and (f1; T1) are isotopic if T0 = T1 = T , and
there is an isotopy ft from f0 to f1 such that for each t, T is a trellis for ft, and we
say that the diffeomorphisms f0 and f1 are isotopic relative to T . We say that (f0; T0)
and (f1; T1) are conjugate if there is a homeomorphism h such that h ◦ f0 = f1 ◦ h and

h(T
U/S
0 ) = T

U/S
1 .

These relations allow us to define the equivalence classes of trellis map which will be our
primary object of study.

Definition 2.4 (Trellis mapping class and trellis type) The trellis mapping class ([f ]; T )
is the set of all trellis mapping pairs (f̃ , T ) which are isotopic to (f ; T ). The trellis type

[f ; T ] is the set of all trellis mapping pairs (f̃ , T̃ ) which are conjugate to a map in ([f ]; T ).
If [f0; T0] = [f1; T1], we consider (f0; T0) and (f1; T1) to be equivalent.

The most important subsets of T U/S are intervals with endpoints in T U ∩ T S, especially
those which have no intersections in their interior.

Definition 2.5 (Branch, arc, segment and end) A branch of a trellis T is the closure
of the intersection of T U/S with a branch of the tangle W U/S . An arc of T U/S is a closed
subinterval of T U/S with endpoints in T U ∩T S. A segment of T U/S is an arc of T U/S with
no topologically transverse intersection points in its interior. An end interval of a trellis
is a subintervals of T U/S which does not lie in any segment.

Note that points q1 and q2 lie in the same branch of T U/S if and only if f∓n(q1) and
f∓n(q2) lie in the same component of T U/S \ P for some n. Unlike the case of a tangle, a
branch of a trellis need not be connected, and contains its endpoints. A branch is trivial
if it does not intersect any other branch. An end intersection of a trellis is an intersection
which does not lie in two segments of T U/S (so lies in at least one end interval of T U/S).

A surface diffeomorphism f with a periodic saddle orbit has infinitely many trellises,
which are partially ordered by inclusion. Taking a smaller trellis gives a subtrellis, and a
larger trellis a supertrellis.

Definition 2.6 (Subtrellis and supertrellis) Let f be a diffeomorphism with a tangle

W = (WU ,W S), and trellises T and T̂ . Then T is a subtrellis of T̂ if TU/S ⊂ T̂U/S, and T

is a subtrellis of W if T U/S ⊂ WU/S. We say T̂ is a supertrellis of T and Ŵ is a supertangle
of T .

Of particular importance are those supertrellises which can be obtained by iterating seg-
ments or branches.
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Definition 2.7 (Iterate and extension) Let T be a trellis for a diffeomorphism f .

Then a trellis T̂ is an f -iterate of f if there exist positive integers nu and ns such that
T̂U = fnu(TU ) and T̂ S = f−nu(T S). A trellis T̂ is an f -extension of T if there exists n
such that

TU ⊂ T̂U ⊂ fn(TU ) and T S ⊂ T̂ S ⊂ f−n(T S).

An iterate/extension is a stable iterate/extension if T̂U = TU and an unstable iter-

ate/extension if T̂ S = T S . In a similar way, we say the trellis mapping class ([f̂ ]; T̂ )

is an iterate or extension of ([f ]; T ) if (f̂ ; T ) ∈ ([f ]; T ) and T̂ is an f̂ -iterate or extension
of T .

A trellis T̂ is therefore an extension of T if it is a subtrellis of some iterate of T . The
main difference between extensions and supertrellises is that the periodic point sets T̂ P

and T P are equal for an extension, but T P may be a strict subset of T̂ P for a supertrellis.
This difference makes the analysis of supertrellises slightly more complicated than that
of extensions.

The most important subsets of the surface M are those bounded by T U and T S.

Definition 2.8 (Regions) An open region of T is a component of M \ (T U ∪ T S). A
closed region is the closure of an open region, and hence includes the stable and unstable
boundary segments.

We will usually denote regions by the letter R. There are two special types of region
which play an important role later.

Definition 2.9 (Bigon and rectangle) A bigon is a region which is a topological disc
bounded by one stable and one unstable segment with internal angles less than π. A
rectangle is a region which is a topological disc bounded by two stable and two unstable
segments with internal angles less than π.

Bigons play a similar role in the trellis theory as do critical points in the kneading theory,
and may be called critical regions.

The most important dynamical invariant of a trellis type is its entropy.

Definition 2.10 (Entropy) The entropy of a trellis type [f ; T ], denoted htop [f ; T ] is the
infemum of the topological entropies of diffeomorphisms in [f ; T ]; that is

htop [f ; T ] = inf{htop(f̂) : f̂ ∈ [f ; T ]} .

If this infemum is not a minimum, we sometimes write htop [f ; T ] = inf{htop(f̂)} + ε.

We now illustrate the concepts introduced so far with one of the most important trellis
types, the Smale horseshoe trellis.

Example 2.11 (The Smale horseshoe trellis)
The Smale horseshoe trellis is formed by the stable and unstable manifolds of the direct
saddle fixed point (i.e. the saddle point with positive eigenvalues) of the Smale horseshoe
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v0
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q

f2(q)

f(q)

Figure 1: The Smale horseshoe trellis.

map, and is depicted in figure 1. The stable and unstable sets are subsets of the stable and
unstable manifolds of the saddle fixed point p. The branches of this trellis are connected
and the all intersection points are transverse. The points q, f(q) and f 2(q) are primary
intersection points on a single homoclinic orbit. The trellis type is completely determined
by the geometry of T and the primary homoclinic orbit. Points on the orbits of the
intersection points v0 and v1 are shown in white dots. These orbits are the forcing orbits
for the Smale horseshoe trellis type; it is essentially impossible to remove any intersection
points of the Smale horseshoe trellis by an isotopy without first removing v0 and v1 in a
homoclinic bifurcation. Throughout this paper we follow the convention of showing forcing
orbits as which dots, and primary intersection points as crosses. There are eight regions,
an unbounded region R∞, three bigons and four rectangles. Under the Smale horseshoe
map, there is a Cantor set of nonwandering points contained in the (closed) rectangular
regions R0 and R1, including a fixed point in R1. All other points are wandering except
for an attracting fixed point at the end of one unstable branch of T U (p) in R∞. The
topological entropy of the Smale horseshoe map is log 2. We shall see later that any
diffeomorphism with this trellis type must have topological entropy at least log 2.

Notice that one of the unstable branches of the Smale horseshoe trellis ends in an at-
tracting fixed point a, and one of the stable branches is non-existent. Both of these are
therefore trivial branches.

Given a trellis, we can obtain a canonical map of pairs by cutting along the unstable curve.
A formal description of cutting is given in [Col99], here we give an intuitive definition.

Definition 2.12 (Cutting) Let T be a trellis for a diffeomorphism f of some surface
M . The topological pair obtained by cutting along the unstable curve is denoted CT =
(CT U M, CT U T S). The diffeomorphism f lifts for a map Cf on CT .

Notice that the pair CT = (CT U M, CT U T S) contains the pair (M \ T U , T S \ TU ) as an
open subset which is invariant under Cf . Indeed, CT can be regarded as a natural com-
pactification of M \T U . This compactness is important in the rigorous application of the
Nielsen periodic point theory. However, the homotopy properties of (CT U M, CT U T S) and
(M \ TU , T S \ TU ) are essentially the same.
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We finally give two subclasses of trellis which are important for technical reasons. We
consider proper trellises in order that the stable set be well-behaved after cutting, and
well-formed trellises in order that the isotopy classes of curves with endpoints in T S are
well behaved under iteration.

Definition 2.13 (Proper and well-formed trellises) We say a trellis T = (T U , T S)
is proper if ∂T S ⊂ TU and ∂TU ∩ T S = ∅. We say a trellis type [f ; T ] is well-formed if
every component of T U ∪ f(T S) contains a point of T P .

In other words, a trellis is proper if the endpoints of intervals in T S lie in TU , but the
endpoints of intervals in T U do not lie in T S. Note that considering proper trellises is no
great loss of generality; an unstable curve with an endpoint in T S can be extended by an
arbitrarily short piece of curve, and a stable curve with an endpoint not in T U can be
shrunk by removing its end. Further, since the ends of a trellis give no useful information
about the dynamics, both these procedures are harmless and do not affect dynamical
computations in any way. Henceforth, all trellises will be taken to be proper trellises unless
otherwise stated. Restricting to well-formed trellises will be important when considering
the graph representative and gives a necessary condition for the topological entropy of
the graph representative to be an optimal entropy bound for the trellis mapping class.

2.2 Biasymptotic orbits

By a biasymptotic orbit, we mean a homoclinic or heteroclinic orbit to an invariant set
of periodic points. Just as we can consider isotopy classes of surface diffeomorphisms
relative to periodic orbits and trellises, we can also consider isotopy classes relative to
biasymptotic orbits.

Definition 2.14 (Biasymptotic mapping class and biasymptotic type) Let f be
a surface diffeomorphism, and X a closed, invariant set consisting of a set of periodic
saddle orbits XP and a set XV of biasymptotic orbits to XP . We write (f ; X) if f is a
diffeomorphism with a set X which is the closure of a set of biasymptotic orbits. The
isotopy class of f relative to X is called the biasymptotic mapping class ([f ]; X). The
conjugacy class of ([f ]; X) is the biasymptotic type [f ; X].

Methods for computing the dynamics forced by a biasymptotic type have been given by
Handel [Han99] and Hulme [Hul00]. Here we show how to relate a biasymptotic type to
a trellis type class, and hence derive a new method for computing the dynamics.

Since XP is a finite set of saddle orbits, we can compute the stable and unstable manifolds
WU/S(f ; XP ). Since the points of XV are biasymptotic to XP , they are all intersection
points of WU and W S. However, W U and W S may have extra intersections which are
not in X, and indeed, typically have infinitely many such intersections. Different repre-
sentatives of a biasymptotic mapping class will have different tangles.

Definition 2.15 (Compatible tangle/trellis) Let ([f ]; X) be a biasymptotic mapping

class. Then if f̂ is any diffeomorphism isotopic to f relative to X, the tangle Ŵ =
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W (f̂ ; XP ) is a compatible tangle for ([f ]; X), and any trellis T with T U/S ⊂ WU/S is a
compatible trellis.

There are many different trellis types compatible with a biasymptotic type ([f ]; X). To
restrict the possible trellises, we consider only trellises with connected branches, and
specify the end intersections of each branch as a point of X. This gives rise to the notion
of a Birkhoff signature.

Definition 2.16 (Birkhoff signature) A Birkhoff signature for a biasymptotic map-
ping class ([f ]; X) is a pair B = (BU ,BS) of subsets of X such that BU contains one point
of X from each branch of W U (f ; XP ) and BS contain one point of X from each branch
of W S(f ; XP ). If B1 and B2 are two signatures, we say B1 6 B2 if the trellis T1 for f
compatible with ([f ]; X) and with end intersections in B1 is a subtrellis of the compatible
trellis T2 with end intersections in B2.

Passing from a trellis to a set of biasymptotic orbits is simpler; we take V to be a subset of
the set of intersections of T , and X = cl(

⋃∞

n=−∞ fn(V )) An important question is whether
X and T force the same dynamics. This will be answered in Section 3.

p q
−2 q

−1

v0

q1

v2

q2

v3

q3

v1

q0

v
−1v

−2

(a)

(b) (c)

(d) (e)

Figure 2: (a) Orbits {qi} and {vi} of the Smale horseshoe map. (b-e) Trellises compatible
with {qi} and {vi}.

Example 2.17 (Compatible trellises)
In figure 2 we show four trellises compatible with the biasymptotic mapping class ([f ]; X),
where

X = {p} ∪ {qi} ∪ {vi}

The orbits qi and vi shown in Figure 2(a) are orbits of the Smale horseshoe map homo-
clinic to the saddle point p. Both these orbits lie in the same branch of W U (p) and W S(p),
so a signature consists of a pair of points from either orbit. The trellis in Figure 2(b) has
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signature ({q0}, {v2}) and no intersections other than p. The trellises in Figure 2(c) and
Figure 2(d) have signature ({q2}, {v0}). However, the trellis in Figure 2(c) has a tangency
at v1, whereas the trellis in Figure 2(d) has a transverse intersection with negative orien-
tation. The trellis in Figure 2(e) has signature ({v2}, {q0}), but has a pair of transverse
intersections which is not forced by X.

2.3 Graph maps

Our main tool for computing and describing the dynamics forced by a trellis mapping
class or trellis type is to relate the trellis map to a graph map. We will mostly use the
same terminology and notation for graphs as in [BH95], though our terminology for thick
graphs is closer to that of [FM93].

A graph G is a one-dimensional CW-complex with vertices V (G) and edges E(G). An
edge-path is a list e1 . . . en of oriented edges of G such that ı(ēi) = ı(ei+1) for 1 6 i < n,
and an edge loop is a cyclically-ordered list of edges. The trivial edge-path contains no
edges and is denoted ·. An edge-path e1 . . . en back-tracks if ei+1 = ēi for some i, otherwise
it is tight. A graph map g is a self-map of G taking a vertex to a vertex, and edge e to
an edge-path e1 . . . ek such that ı(e1) = g(ı(e)) for all directed edges e. The derivative
map ∂g takes oriented edges to oriented edges or ·, with ∂g(ei) = ej if g(ei) = ej . . . and
∂g(ei) = · if g(ei) = ·.

We will always consider a graph embedded in a surface by an embedding i. This induces
a natural cyclic order � on the oriented edges starting at each vertex. A pair of edges
(e1, e2) is a turn in G at at vertex v if v = ı(e1) = ı(e2) and e1 � e2, so e2 immediately
follows e1 in the cyclic order at v. An edge-loop π = . . . p1p2 . . . pn, . . . is peripheral in G
if (pi+1, p̄i) is a turn in G for all i.

A graph embedded in a surface can be “thickened” to obtain a thick graph (or fibred
surface) with thick vertices and thick edges, the latter foliated by stable and unstable
leaves. The inverse of this thickening is achieved by collapsing thick vertices to vertices
and thick edges to edges. A thick graph map is an injective map of a thick graph which
preserves the stable and unstable foliations, is a strict contraction on the set of thick
vertices and on the stable leaves, and is a strict expansion on the unstable leaves. A
graph map is embeddable if it can be obtained from a thick graph map by collapsing the
stable leaves.

The peripheral subgraph P of an embeddable graph map g is a maximal invariant subset
of G consisting of simple peripheral loops. Edges of P are called peripheral edges. If
gn(e) ⊂ P for some n, then e is pre-peripheral. The set of pre-peripheral edges is denoted
Pre-P , and contains P .

The transition matrix of a graph map g is the matrix A = (aij) where aij is the number
of times the edge ej appears in the image path of edge ei. The largest eigenvalue of A is
the growth rate λ of g, and the logarithm of the growth rate gives the topological entropy
of g.

We now relate a trellis mapping class to a graph map via the map Cf of the topological
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pair CT obtained by cutting along the unstable curves. The result is a map of a topological
pair (G,W ) where W is a finite subset of G.

Definition 2.18 (Controlled graph map) Let (G,W ) be a topological pair where G
is a graph and W is a finite subset of G. Then edges of G containing points of W are
called control edges. A graph map g : (G,W ) −→ (G,W ) is a controlled graph map if
g(z) is a control edge whenever z is a control edge.

A vertex of G which is the endpoint of a control edge is called a control vertex. All other
vertices are called free vertices, and edges which are not control edges are called free edges.
Free edges which are neither peripheral nor pre-peripheral are called expanding edges.

A controlled graph is proper if it is connected and each free vertex has valence at least
3. A proper controlled graph has at most 3#(W ) − 3χ edges, and 3#(W ) − 2χ vertices,
where #(W ) is the number of points of W , or equivalently, the number of control edges.

To relate maps of pairs on different spaces, we need the notion of exact homotopy equiv-
alence defined in [Col01]. A graph map representing the topology of a trellis via exact
homotopy equivalence is called compatible with the trellis.

Definition 2.19 (Compatible graph map) Let (G,W ) be a topological pair where G
is a graph and W is a finite subset of G. Then (G,W ) is compatible with a transverse
trellis T if (G,W ) and (CT U M, CT U T S) are exact homotopy equivalent by an embedding
i : (G,W ) −→ (CT U M, CT U T S), and G crosses T S transversely. A controlled graph map
g of (G,W ) is compatible with the trellis mapping class ([f ]; T ) if the embedding i is an
exact homotopy equivalence between g and Cf , and g and Cf have the same orientation
at points of W .

Note that the inclusion i induced a bijection between the regions of CT (and hence of T )
with the regions of (G,W ), and that all compatible graphs are exact homotopy equivalent.
We restrict to transverse trellises since a trellis with tangencies may not have a compatible
controlled graph; while it is always possible to find a topological pair (G,H) which is exact
homotopy equivalent to (CT U M, CT U T S) for which G is a graph, it may not be possible to
take H to be a finite set of points.

p

Figure 3: The controlled graph (G,W ) is compatible with the trellis T .
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The controlled graph shown in figure 3 is compatible with the trellis T . The control edges
are shown as thick shaded lines.

2.4 Reducibility

A system is reducible if it can be split into simpler subsystems. In the Nielsen-Thurston
theory, we say a homeomorphism f of a surface M is reducible if there is a collection C of
simple closed curves such that every component of M \C has negative Euler characteristic,

f is isotopic to a homeomorphism f̃ such that f̃(C) = C. Since the Euler characteristic
of M \C is the same as that of M , either M \C consists of a single component with the
same Euler characteristic but lower genus, or M \ C consists of components whose Euler
characteristic is greater (less negative) than that of C.

For the case of a trellis mapping class, the situation is complicated somewhat. A trellis
T on the sphere may consist of two separate pieces (i.e. T U ∪ T S is not connected)
in which case we may be able to simplify by considering each piece separately. More
importantly, we may have a situation in which T has two periodic orbits, PA and PB,
for which TU (PA) ∩ T S(PB) = ∅. In this case, we may be able to isotope to obtain a
diffeomorphism f which has an attractor A containing PA and a repellor B containing
PB, and again we can consider these situations separately.

Definition 2.20 (Reducibility of a trellis mapping class) A trellis mapping class

([f ]; T ) has an invariant curve reduction if there is a diffeomorphism f̃ homotopic to

f relative to T and a closed one-manifold C such that C is invariant under f̃ , is disjoint
from TU ∪ T S and each component of the complement of C either contains a subtrellis of
T , or has negative Euler characteristic. If the complement of C is disconnected, we have
a separating reduction, otherwise we have a non-separating reduction. A trellis mapping
class ([f ]; T ) has an attractor-repeller reduction if there is a diffeomorphism f̃ homotopic
to f relative to T and a closed one-manifold C such that C divides M into subsets A and
B such that cl(f̃(A)) ⊂ int(A), and both A and B contain a point of T P

In both cases, the set C is called a set of reducing curves. It is clear that reducibility is a
property of the trellis type, and not just the trellis mapping class. For most of this paper,
we only consider irreducible trellis mapping classes.

Example 2.21 (An attractor-repellor reduction)
A trellis type with an attractor-repellor reduction is shown in figure 4. A sub-basin A of
an attractor is shaded. Notice that the unstable set T U (p1) lies in A, which means it is

possible to find a diffeomorphism f̃ for which W U (f̃ ; p1) ∩ W S(f̃ ; p0) = ∅. The closure
of the unstable manifold of p1 is then a non-trivial chaotic attractor, though it may have
non-trivial sub-attractors.

The reducibility of a trellis mapping class ([f ]; T ) can be seen from a compatible graph
map (g; G,W ). If g has an invariant subgraph H which does not contain any control edges,
then ([f ]; T ) has an invariant curve reduction if either H has negative Euler characteristic,
or is a union of non-peripheral simple closed curves. If both H and the complement of H
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p1

p0

Figure 4: An trellis with an attractor-repellor reduction.

contain periodic control edges, and H does not deformation-retract onto its control edges,
then ([f ]; T ) has an attractor-repellor reduction.

3 Minimal Trellises

In this section, we consider how to construct a canonical trellis from a set of biasymptotic
orbits to a trellis, and how to extend a trellis to a larger trellis. We shall usually consider
extensions with a given Birkhoff signature. As previously remarked, this does not guar-
antee a unique trellis type. Instead, we define what it means for a trellis to be a minimal
trellis compatible with a given biasymptotic mapping class. By carefully isotoping a given
trellis mapping pair, we can construct a minimal compatible trellis. We then show that
the type of a minimal compatible trellis is almost unique given its end points, the only
ambiguities arising from the orientation (transverse or tangent) of the intersections.

We also consider minimal supertrellises of a given trellis mapping class. A minimal su-
pertrellises is forced by the biasymptotic orbits of the intersections of the original trellis.
Unlike a minimal trellis for a biasymptotic mapping class, the orientations of the inter-
sections are uniquely determined.

3.1 Pruning isotopies

If ft is an isotopy of surface diffeomorphisms with a continuously-varying collection Pt of
periodic saddle orbits, then the stable and unstable manifolds W U/S(Pt; ft) can also be
continued under the isotopy. We can therefore restrict to a continuously-varying set of
trellises Tt for ft. The trellis type [ft; Tt] changes on passing through a tangency, or if
an end intersection is created or removed. The bifurcations occurring near tangencies of
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dissipative saddle points are extremely complicated. In particular, it is known that homo-
clinic orbits must be both created and destroyed in a neighbourhood of the bifurcation.
However, if we restrict to a trellis, we can isotope in such a way as to only remove inter-
section points. Such an isotopy is called a pruning isotopy, by analogy with the prunings
of de Carvalho [dC99].

Definition 3.1 (Pruning isotopy) Let ft be an isotopy and Tt be a trellis for ft. Then
(ft; Tt) is a pruning isotopy if for every t′ ∈ [0, 1], there is an isotopy of embeddings
T V

t′ ↪→ T V
t for t 6 t′.

Without loss of generality, we can restrict to pruning isotopies which preserve the unstable
set TU . A tangency can only be created during a pruning isotopy be collapsing certain
bigons. These bigons are called an inner bigons

Definition 3.2 (Inner bigon) Let (f ; T ) be a trellis mapping pair. A bigon B is inner
if B ∩

⋃∞

n=−∞ fn(T V ) = BV , where BV denotes the vertices of B.

Of course, an inner bigon containing a point of X cannot be removed by an isotopy relative
to X.

(e)(d)

(c)

(f)

(b)(a)

x

Figure 5: A pruning isotopy starting with the Smale horseshoe trellis (a) and ending with
a minimal trellis compatible with the orbit of x (f).

An example of a pruning isotopy is shown in figure 5. The isotopy starts with the Smale
horseshoe trellis, and ends with a trellis which is minimal with respect to the orbit of x.
The inner bigons are shaded.

One of the fundamental properties of pruning is that it reduces the number of essential
Nielsen classes. An immediate consequence is that the Nielsen entropy of the trellis
mapping class is reduced during a pruning isotopy.
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Theorem 3.3 (Entropy decreases during pruning) Suppose (ft; Tt) is a pruning iso-
topy. Then hniel [f0; T0] > hniel [f1; T1]. Further, any essential Nielsen class for [f1; T1] can
be continued to an essential Nielsen class of [f0; T0].

Proof: Without loss of generality, we can assume T U is constant and that T V
1 ⊂ T V

t for
all t. We need only show that (f0; T0) has at least as many essential Nielsen classes of
any period as f1. Let CF be the fat homotopy of C(f)t, so CF (x, t) = (Cft(x), t) for all
t. Note that CF is defined on CT U M × I, and maps the set

⋃
t∈[0,1] C()T

U (T S
t ) × {t} into

itself.

Let (xi) and (yi) be periodic orbits of Cf1 in different Nielsen classes. Suppose (xi, 1) and
(yi, 1) are Nielsen related for CF .

Then there are curves αi(s) from xi to yi in CT U M and parameters τ(s) with τ(0) = τ(1) =
1 such that (αi, τi) is an exact curve from (I, J) for some J to (CT U M×I,

⋃
t∈[0,1] CT (T S

t )×

{t}). If J contains parameter values other than 0 and 1, (that is, the curves (αi, τi) have
interior crossings with the stable manifolds), we can restrict attention to each piece with
no interior crossings separately. Hence, we can assume J ⊂ {0, 1}.

Now since CF ◦ (αiτ) is homotopic to (αi+1, τ), we have fτ(·) ◦ αi ∼ αi+1, and hence
f1 ◦αi ∼ αi+1. We need to show that the αi have no essential intersections with T S

1 . Since
(αi(s) does not intersect CT (Tτ (s)

S), the curves αi have no essential intersections with
arcs of T S

1 considered as cross-cuts relative to T V
1 , and so we can homotope αi to βi such

that βi has no interior intersections with T S
1 .

Therefore, if (xi) and (yi) are periodic orbits of f1 which are Nielsen related for the fat
homotopy of ft on [0, 1], then (xi) and (yi) are Nielsen related as periodic orbits of f1.
Hence any two Nielsen classes which are Nielsen separated for f1 can be continued for
ft with t < 1 and remain Nielsen separated. Therefore the number of essential Nielsen
classes increases as t decreases. 2

We note that while the topological entropy appears to change continuously on passing
through a tangency, the Nielsen entropy undergoes a discontinuous change.

3.2 Minimal compatible trellises

Given a Birkhoff signature, there are still many, indeed infinitely many, trellis types
compatible with a biasymptotic type. Of these, we are most interested in trellises which
have no intersections which can be removed by a pruning isotopy in the biasymptotic
mapping class. Such a trellis is a minimal compatible trellis.

Definition 3.4 (Minimal compatible trellis) Let ([f ]; X) be a biasymptotic mapping

class. Then a trellis mapping pair (f̃ ; T̃ ) is a minimal compatible trellis mapping pair if

f̃ is isotopic to f relative to X, and

1. Every bigon of T̃ either contains a point of X in the interior of one of its boundary
segments, or both vertices are points of X.
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2. Every tangency of T̃U and T̃ S is a point of X.

3. The end intersections of T̃U and T̃ S are points of X.

The trellis T̃ is called a minimal compatible trellis for ([f ]; X).

Clearly, a trellis with a minimal number of intersections in the biasymptotic mapping
class is a minimal compatible trellis. We shall see later that a minimal compatible trellis
is (essentially) unique.

The main result of this section is that for every set X of biasymptotic orbits, there is a
minimal compatible trellis with any Birkhoff signature. The basic idea of the proof is to
start with any compatible trellis mapping pair and try to remove intersection points by
a pruning isotopy. If (f ; T ) is not minimal, then either T has a tangency v which is not

(b) (c) (d)(a)

Figure 6: Isotopies removing intersections in K: (a) removing intersections from a bigon,
(b) removing a tangency, (c) making a tangency at a point of X and (d) moving a
transverse intersection to a point of X.

in X, or an inner bigon, and we can reduce the number of intersections in a disc K by
performing an isotopy of T S of the form shown in figure 6.

Theorem 3.5 (Existence and uniqueness of minimal compatible trellis) Suppose
([f ]; X) is a biasymptotic mapping class and B = (BU ,BS) is a signature in X. Then

there is a minimal (f̃ ; T̃ ) compatible with ([f ]; X) with signature B. Further, if (f̃0; T̃0)

and (f̃0; T̃1) are minimal trellis mapping pairs compatible with ([f ]; X) and have the same

type (transverse or tangential) of intersection at each point of X then [f̃0; T̃0] = [f̃1; T̃1].
In particular, if ([f ]; X) has a minimal transverse compatible trellis, then there is a unique
minimal transverse compatible trellis type.

Proof of theorem 3.5 (existence): Suppose f̃ is a diffeomorphism which agrees
with f except on a compact set K. Suppose further that there exist positive integers nu

and ns such that fnu(K) ∩ TU = fns(K) ∩ T S = ∅ and the sets fn(K) are disjoint for
−ns 6 n 6 nu. Then f̃n(K) = fn(K) for −ns 6 n 6 nu. Let T̃ be the trellis for f̃
with T̃U/S = f̃±nu/s(f∓nu/s(TU/S)). Then T̃U \ (

⋃nu

n=1 fn(K)) = T̃U \ (
⋃nu

n=1 fn(K)) and

T̃ S \ (
⋃ns

n=0 f−n(K)) = T̃ S \ (
⋃ns

n=0 f−ns(K)). We also have K ∩ T̃ S = f̃−1(f(T S ∩K)), so

writing f̃ = f ◦ h−1, we see that h is supported in K and T̃ S ∩ K = h(T S ∩ K). Hence
T̃ V ∩ K = T̃U ∩ T̃ S ∩ K = TU ∩ h(T S) ∩ K.
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Now suppose we also have fnu(K)∩T S = fnu(K∩T S) and f−ns(K)∩TU = f−ns(K∩TU),
or equivalently, K ∩ fnu(T S) = K ∩ T S and K ∩ f−ns(TU ) = K ∩ TU . Then also
f̃nu(K) ∩ T S = f̃nu(K ∩ T S) and f̃−ns(K) ∩ T̃U = f̃−ns(K ∩ T̃U ). Hence T̃ V ∩ fn(K) =
T̃U ∩ T̃ S ∩ f̃n(K) = T̃U ∩ f̃n(T̃ S ∩ (K)) ⊂ f̃n(T̃U ∩ T̃ S ∩ (K)) = f̃n(T̃ V ∩ (K)) for
1 6 n 6 nu, and a similar argument shows T̃ V ∩ fn(K) ⊂ f̃n(T̃ V ∩ (K)) for −ns 6 n 6 0.
Hence T̃ V = T V outside

⋃nu

n=−ns
fn(K) and f̃n(K) ∩ T̃ V ⊂ f̃n(K ∩ T̃ V ). In particular, if

K ∩ T̃=
∅, then T̃⊂T V .

We can always ensure the sets fn(K) for −ns 6 n 6 nu are disjoint by choosing K to be a
sufficiently small disc. Further, if K does not contain a point of B, then K ∩ f−nu(T S) =
K ∩ T S and K ∩ fns(TU ) = K ∩ TU . If K is a disc containing at most one point of X,
then f̃ is isotopic to f relative to X.

We now take isotopies to reduce the number of intersections. First, we can then isotope
in a neighbourhood of any non-isolated intersection points to obtain a trellis T1 for a
diffeomorphism f1 with finitely many intersections.

If (f1, T1) is minimal, then we are done. If v is a tangency of T1 which is not a point of X,
we can isotope at v as shown in Figure 6(a) to obtain a trellis with fewer intersections.We
obtain a pair (f2, T2) where T2 is a trellis with no tangencies except at points of X. If T2

has any bigons which contain no points of X, then we must be able to find a bigon B for
which B ∩

⋃∞

n=−∞
fn

2 (T V
2 ) = BV . Then we can find a disc K containing B, and isotope

in K to remove all intersections in K as shown in Figure 6(b) with fewer intersections.
We obtain a pair (f3, T3) for which the only bigons containing a point of X are as shown
in Figure 6(c,d). A further isotopy again reduces the number of intersections.

After finitely many steps we therefore obtain a pair (f̃ ; T̃ ) which is minimal 2

(b)(a)

Figure 7: Possibilities for bigons with both vertices in X.

We now show that a minimal trellis compatible with a given biasymptotic mapping class
with a given signature is essentially unique. Unfortunately, there is one problem; if
there are two points x0 and x1 of X which form the intersections of an inner bigon, the
orientation of these intersections is unspecified by the minimality conditions, as shown in
figure 7. This may result in different minimal compatible trellises.

As part of the proof, we use the following result, which is important in its own right, since
it shows that a trellis type is specified by a trellis T and a biasymptotic mapping class
containing the end intersections of T U and T S. This greatly simplifies the representation
of a trellis mapping class required for computations, and justifies our custom of specifying
a trellis mapping class by drawing the trellis and part of a biasymptotic orbit.

Theorem 3.6 Suppose (f0; T ) and (f1; T ) are compatible with the biasymptotic mapping
class ([f ]; X). Then the trellis mapping classes ([f0]; T ) and ([f1]; T ), are equal.
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Proof: Let h = f−1
0 ◦ f1. Then h is isotopic to id relative to X. Since T U consists of

cross-cuts to X, there is an isotopy h̃t such that h̃0 = id, h̃1 = h and h̃t(T
U ) = TU for all

t. If we now cut along T U , we find that h is isotopic to the identity by the isotopy h̃, and
T S is a set of cross-cuts. Therefore, by the isotopy extension theorem, there is an isotopy
ht such that h0 = id, h1 = h, and for all values of t, ht(T

U ) = TU and ht(T
S) = T S. To

show that ft = f0 ◦ht gives the required isotopy from f0 to f1, we need only check that ft

preserves T U and T S. We have f−1
t (TU ) = h−1

t (f−1
0 (TU )) = f−1

0 (TU ) since f−1
0 (TU ) ⊂ TU ,

and ft(T
S) = f0(ht(T

S)) = f0(T
S), as required. 2

We can now complete the proof of Theorem 3.5.

Proof of theorem 3.5 (uniqueness): Since the curves T U and T S are mutually
homotopic, have the same types of intersection at X, and have minimal intersections with
respect to X, there is a homeomorphism h such that h(T0) = T1 and h is isotopic to
the identity relative to X. Then (h−1 ◦ f1 ◦ h; h−1 ◦ T1) = (h−1 ◦ f1 ◦ h; T0), and f0 and
h−1 ◦ f1 ◦h are isotopic relative to X. Then by Theorem 3.6, (f0; T0) and (h−1 ◦ f1 ◦h; T0)
are in the same trellis mapping class, so (f0; T0) and (f1; T1) have the same type. 2

Since minimal trellises are obtained by removing intersections by pruning, we immediately
obtain:

Corollary 3.7 (Minimal trellises have minimal numbers of intersections) Let [f ; T ]
be a minimal trellis type for the biasymptotic mapping class ([f ]; X). Then T has finitely

many intersections, and if [f̃ ; T̃ ] is any other trellis type compatible with ([f ]; X) with the

same signature, then T̃ has more intersections than T .

3.3 Minimal extensions and supertrellises

We have considered how to construct a from a set of biasymptotic orbits a trellis with a
given signature. We can also extend trellises to longer trellises. Of particular interest are
those which do not introduce any more intersections than necessary. Such trellises are
called minimal iterates and minimal extensions.

Definition 3.8 (Minimal iterate, extension and supertrellis) Let ([f ]; T ) be a trel-

lis mapping class. A supertrellis (f̃ ; T̃ ) of ([f ]; T ) is a natural minimal supertrellis of
([f ]; T ) if

1. Every bigon contains a point of
⋃∞

n=−∞ f̃n(T V ).

2. Every tangency is a point of
⋃∞

n=−∞ f̃n(T V ).

3. The ends intersections of T̃U are points of f(T S) and the end intersections of T̃ S

are points of f−1(TU ).

19



A minimal supertrellis is any supertrellis which is a subtrellis of a natural minimal su-
pertrellis. A minimal supertrellis which is an iterate or extension is a minimal iterate or
minimal extension.

x0

x1

(a) (b)

Figure 8: Extensions of the Smale horseshoe trellis (a) is a minimal extension, (b) is not.

The trellis shown in Figure 8(a) is a minimal extension of the Smale horseshoe trellis,
but the trellis shown in Figure 8(b) is not, since the intersection points x0 and x1 can be
removed. Note that if the end intersection condition is not satisfied, it is possible to find a
supertrellis of ([f ]; T ) for which every bigon contains a point of

⋃∞

n=−∞ f̃n(T V ), but which
has an end intersection whose braid type can be removed by isotopy. We will mostly be
concerned with minimal extensions, since they have similar properties to minimal trellises
compatible with biasymptotic mapping class.

Theorem 3.9 (Existence and uniqueness of minimal extensions) Let ([f ]; T ) be a

trellis mapping class, X =
⋃

n∈Z
fn(T V ), B the signature class of T in X, and B̃ a sig-

nature class in X with B̃ > B. Then there is a unique trellis type [f̃ ; T̃ ] with signature B̃

such that (f̃ ; T̃ ) is a minimal extension of ([f ]; T ). Further, if T is a transverse trellis,

so is T̃ .

The proof is essentially the same as that of Theorem 3.5, and is omitted. Note that any
inner bigon of T̃ is an iterate of some inner bigon of T , so the intersection type is given
by T .

Since minimal supertrellises have essentially the same forcing orbits as the original trellis,
we expect the dynamics to be the same as that forced by the original trellis, or indeed,
the dynamics forced by the biasymptotic orbits themselves. Minimal minimal supertrel-
lises therefore provide a way of getting more information about the dynamics without
increasing entropy.

Theorem 3.10 (Nielsen entropy of minimal supertrellis) Let ([f ]; T ) be a well-formed

trellis mapping class. If (f̃ ; T̃ ) is a minimal supertrellis of ([f ]; T ), then hniel [f̃ ; T̃ ] =
hniel [f ; T ].
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Proof: Consider the case for which T U = T̃U . Let (αi) be a family of relating curves for

(f̃ ; T ). Without loss of generality, we need only consider the case for which intersections
of αi with T S are at the endpoints. Further, we can homotope the αi so that αi has
minimal intersections with T̃ S.

Suppose there is an intersection of αi with T̃ S that maps to a non-essential intersection
of f ◦ αi with T̃ S. Then there is a disc D bounded by an arc of f̃ ◦ αi and a segment S
of T̃ S which is not in T S such that D is disjoint from T U . Further, since the intersection

is a point of f̃(T̃ S) and the endpoints of (T̃ S are points of T U , the segment S entirely lies

in f(T̃ S), so f̃−1(S) ⊂ T̃ S. Then f̃−1(D) is bounded by an arc of αi and an arc of T̃ S.

However, αi has minimal intersections with T̃ S, so D contains a point of T̃U . Since the
endpoints of T U lie in T S, the disc D must contain a bigon. However, any bigon bounded
by TU and an arc of T̃ S must contain a point of T S, a contradiction.

Hence any intersection of αi with T̃ S maps to an essential intersection of f̃ ◦ αi with T̃ S,
and hence is preserved under isotopy to αi+1. Therefore the number of intersections of
αi increases as i increases, but since αn = α0, this number is constant, and f̃ ◦ αi ∼ αi+1

taking αi as a relative maps on (I, α−1
i (T S)).

The case for T S = T̃ S follows on reversing time and noticing that Nielsen classes for f̃
and f̃−1 are identical except for finitely many classes related to T P . 2

3.4 Extensions of reducible trellises

We now examine the hypothesis of irreducibility in more detail. Recall that the main effect
of reducibility is that the dynamics of a reducible trellis mapping class can be separated
into simpler pieces. We now show that the converse is also true; the dynamics forced by
an irreducible trellis essentially lies in one minimal component. To prove this, we need to
carefully consider the intersections of branches of the trellis.

We consider a relationship based on heteroclinic chains.

Definition 3.11 (Heteroclinic chains) Let ([f ]; T ) be an transverse trellis mapping
class, and pu, ps ∈ T P . We say there is a heteroclinic chain from pu to ps of length n
if there are points pu = p0, p1, . . . pn = ps in T P and an integer m such that for every f̂
isotopic to f relative to T we have T U (pi)∩ f̂−m(T S)(pi+1) 6= ∅ for i = 0, 1, . . . n− 1. We
write pu � ps if there is a heteroclinic chain from pu to ps. A subset C of T P is chain
transitive if p1 � p2 for all p1, p2 ∈ P .

Clearly, � is a transitive relation, though it need not be reflexive or symmetric, and �
induces a transitive relation on the chain transitive sets. If � is not reflexive, then there
may be a chain-transitive set C such that W U (C) does not intersect W S(C).

Note that although pu � ps implies WU (f̂ ; pu) intersects W S(f̂ ; ps) for any f̂ isotopic to f
relative to T , it is not necessarily true that there exists an n such that T U (pu) intersects

f̂−n(T S(ps)) for any such f̂ . In other words, the intersections may lie in arbitrarily high
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iterates.

There is a strong relation between chain transitive components and reduction. If C is a
reflexive chain transitive component, then C contains a homoclinic orbit, so induces some
chaotic behaviour. A chain transitive component C which is not reflexive must consist of
a single periodic point p with W U (p) ∩ W S(p) = ∅, so there are no homoclinic orbits to
p. If CR and CA are chain transitive components and CR � CA 6� CR, then we hope to
find an attractor-repellor reduction with CA in the attractor and CR in the repellor. If
C = f(C), then the tangle of the orbits of C is connected, but if C = fN (C) for some
least N > 1, then the tangle of the orbits of C may have several components, which may
form the basis for some invariant curve reduction.

Theorem 3.12 (Intersections of irreducible tangles) Let ([f ]; T ) be a well-formed
irreducible transverse trellis mapping class, and let W be the infinite f -extension of T .
Then if TU [pu, bu] and T S[ps, bs] are nontrivial branches of T , the branches W U (pu, bu,∞)
and W S(ps, bs,∞) intersect transversely.

Proof: First, notice that if pu = p0, p1, . . . pn = ps is a heteroclinic chain, and W
is the infinite f -extension of T , then by the Lambda lemma, since W U (pi−1, bi−1,∞)
transversely intersects W S(pi) and WU (pi) transversely intersects W S(pi+1, bi+1,∞), we
see that W U (pi−1, bi−1,∞) transversely intersects W S(pi+1, bi+1,∞). Induction on the
length of the heteroclinic chain shows that W U (pu) transversely intersects W S(ps).

Suppose pu � ps. Let f̃ be a diffeomorphism such that f̃n(TU (pu)) transversely intersects

T S(ps) and (f̃n+1(TU ), T S) is a minimal extension of T . Then f̃n+1(TU )(pu) transversely

intersects f̃(T S(ps)), so f̃n(TU (f(pu))) transversely intersects T S(f(ps)), so f(pu) � f(ps).
Similarly, we can see that f−1(pu) � f−1(ps), and hence fn(pu) � fn(ps) for any n ∈ Z.

Now suppose C is a chain-transitive subset of T P . Since the points of C are periodic and
reflexive under �, there exists least N ∈ N such that p � fN (p) for some p ∈ C. Then
f iN (p) � f (i+1)N(p), for any i, and since p is periodic, we deduce p � f iN (p) � p for any
i. Note that the construction implies that N must divide the period of any point of C.

Now suppose q ∈ C, so p � q � p. Then for any i, we have p � f iN (p) � fni(q) �
f iN (p) � p, so f iN (q) ∈ C. Conversely, we can show that if f iN (q) ∈ C, then q ∈ C.
Therefore, C = fN (C).

The relationship � therefore defines a partial order on the chain transitive sets. Choose
a set C which is minimal in this partial order, and let CA =

⋃∞

n=1 fn(C).

Let ([f0]; T0) = ([f ]; T ), and for i = 1, . . .∞, let ([fi]; Ti) be a minimal extension of
([fi−1]; Ti−1) with Ti = (fi(T

U
i−1), T

S
i−1). Let Ki be a set consisting of T U

i (CA), and all
regions of Ti which are topological discs or annuli and all of whose stable boundary
segments lie in T S(CA). Since TU

i (CA) ∩ T S
i (CR) = ∅, Ki ⊂ Ki+1. Let Ai be a closed

neighbourhood of Ki which deformation retracts onto Ki, and such that Ai ⊂ Ai+1. Now,
χ(Ki \TU ) > χ(Ki+1\TU ) > χ(M), so the Euler characteristics are a decreasing bounded
sequence of integers, so have a limit, which occurs for some An. Then An+1 deformation
retracts onto Kn. Further, f(Kn) ⊂ Kn+1 ⊂ An+1, so by taking An sufficiently small, we
can ensure f(An) ⊂ An+1. Choose an isotopy ht such that h1(An+1) ⊂ An and ht is fixed

on K, and let f̃t = ht ◦ fn. Then f̃1(An) = h1(fn(An)) ⊂ h1(An+1) ⊂ An, so f̃1 ∈ ([f ]; T )
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and maps An into itself.

If CA 6= C, then this gives an attractor-repellor reduction, a contradiction. If CA = C and
χ(An) 6= χ(M), we can isotope f so that the boundary of AN maps to itself, giving an
invariant curve reduction, also a contradiction. Therefore CA = C and there is no reduc-
tion. Since TU (pu, bu) and T S(ps, bs) are closed branches, there are periodic points p̃u and
p̃s such that TU (pu, bu) transversely intersects T S(p̃u) and TU (p̃s) transversely intersects
T S(ps, bs). Then TU (p̃u) transversely intersects T S(p̃s), and so TU (pu, bu) transversely
intersects T S(ps, bs) as required. 2

In other words, if ([f ]; T ) is irreducible, then there exists n such that the nth image
of every unstable branch under f intersects every stable branch. This is, essentially, the
converse to the trivial observation that if ([f ]; T ) has an attractor-repellor reduction, then

there is a diffeomorphism f̃ in ([f ]; T ) and branches of W (f̃ ; T P ) which do not intersect.

4 Graph Representatives

Any connected compact surface with nonempty boundary is homotopy-equivalent to a one-
dimensional space. Further, such spaces, and maps on them, are very easy to describe
combinatorially. We can use these properties to provide a framework for representing
surface diffeomorphisms and computing their dynamical properties. In classical Nielsen-
Thurston theory, surface homeomorphisms are represented on one-dimensional spaces with
a differentiable structure called train tracks. When representing trellises, we also need to
take into account the topology of the stable and unstable curves, and hence obtain a
controlled graph map.

There are many controlled graph maps compatible with a trellis type [f ; T ]. To use graph
maps to describe the dynamics forced by [f ; T ], we need to define a subclass of controlled
graph maps which have minimal entropy in the exact homotopy class. These graph maps
are called efficient, by analogy with Nielsen-Thurston theory. Of the efficient graph maps,
we show in Section 4.3 that there is at most one which is optimal, giving a canonical graph
representative for the trellis type.

Tight, efficient and optimal graph maps can be defined in terms of their actions on the
turns of G. Some of following notions are used in the definitions, and all are useful in
describing the algorithms.

Definition 4.1 (Good, controlled, bad and inefficient turns) Let g be a controlled
graph map of (G,W ), and e0 � e1 a turn of G. If ∂g(e0) 6= ∂g(e1), then e0 � e1 is a good
turn. If ∂g(e0) = ∂g(e1) and at least one of e0 and e1 is a control edge, then e0 � e1 is a
controlled turn, otherwise e0 � e1 is a bad turn. A bad turn e0 � e1 is inefficient if there
is an edge e such that gn(e) = . . . ē0e1 . . ..

Definition 4.2 (Efficient and optimal graph map) Let g be a graph map of a con-
trolled graph G. The controlled graph map g is efficient if there are no inefficient turns,
and optimal if there are no bad turns, and every invariant forest contains a control edge.
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We can now define what it means for a graph map to be a representative of [f ; T ]. As well
as the (complete) graph representative, we also define the restricted graph representa-
tive which contains all the interesting dynamical information. and the topological graph
representative is an invariant of the forcing orbits.

Definition 4.3 (Graph representatives) A controlled graph map (g; G,W ) is a graph
representative of an transverse trellis type [f ; T ] if g is an optimal graph map which is
compatible with [f ; T ). The restricted graph representative of [f ; T ] is the controlled graph
map (g; G,W ), where G =

⋂∞

n=0 gn(G), and W = G∩W . The topological graph represen-
tative of [f ; T ] is the topological conjugacy class of graph map obtained by collapsing all
control edges of the restricted graph representative to points.

The following theorem asserts that every proper irreducible trellis type has a unique graph
representative.

Theorem 4.4 (Existence and uniqueness of graph representatives) Let [f ; T ] be
a proper trellis type with no invariant curve reduction. Then [f ; T ] has a unique graph
representative (g; G,W ). Further, if [f0; T0] and [f1; T1] are trellis types, the graph repre-
sentatives (g0; G0,W0) and (g1; G1,W1) are homeomorphic if and only if [f0; T0] = [f1; T1].

We prove the existence of a graph representative in Section 4.2 by giving an algorithm
to compute it, and uniqueness in Section 4.3. Since the maps Cf0 and Cf1 for different
trellis types are not exact homotopy equivalent, it is trivial that different trellis types
have different graph representatives. This means that the graph representative provides
a convenient way of specifying a trellis type.

Example 4.5 (Graph representatives)
The graph representatives for the trellis type shown in figure 3 are shown in figure 9.

z0

z1

z2z6z8

z7

z3

z4

z5 b1

b2b0

d

a0

b1

b2

z0 z8z6 z2

z4

b0a0 b0

b1

b2a0

(b) (c)(a)

Figure 9: Graph representatives for the trellis type shown in figure 3. (a) is the graph
representative, (b) the restricted graph representative and (c) the topological graph rep-
resentative.

The control edges map

z0, z1, z2 7→ z0; z3 7→ z1; z4 7→ z2; z5 7→ z3; z6, z7, z8 7→ z4;

and the expanding edges map

a0 7→ a0z̄8z6b0b̄1; b0 7→ b1; b1 7→ b2; b2 7→ a0z̄8z6b0; d 7→ a0z̄8z6b0b̄1.
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The edges z1, z3, z5, z7 and d do not lie in g2(G) so are not part of the restricted graph
representative as shown in Figure 3(b). Collapsing the control edges gives the topological
graph representative as shown in Figure 3(c), with

a0 7→ a0b0b̄1; b0 7→ b1; b1 7→ b2; b2 7→ a0b0.

The transition matrix for this graph map is



a b0 b1 b2

a 1 1 1 0
b0 0 0 1 0
b1 0 0 0 1
b2 1 1 0 0




and the growth rate is given by the largest root of the characteristic polynomial λ(λ3−λ2−
2) = 0. Numerically, the growth rate is 1.696, giving topological entropy htop(g) ≈ 0.528.

4.1 Graph moves and zeta functions

The moves we need for the algorithm are based on those of [BH95]. We use four basic
moves, each of which is an exact homotopy equivalence and so preserves the Euler char-
acteristic and number of control edges are unchanged. We define the moves at the graph
level, but all moves can be performed on thick graphs.

Edge tightening Let e be an edge of G with g(e) = e1 . . . eiei+1 . . . en and ei+1 = ēi.
Homotope g to g′ with g′(e) = e1 . . . ei−1ei+2en.

Vertex homotopy Let v be a vertex of G with incident edges e1, . . . , ek and let e0 be
an edge with ı(e0) = g(v). Homotope v across e0 to obtain a new map g′ such that
g′(e) = ē0g(ei) unless g(ei) = e0ε in which case g′(ei) = ε.

Edge collapsing If e is an edge with g(e) = ·, collapse e to a point, and remove all
occurrences of e in the image of g.

Vertex splitting Suppose v is a vertex of G, and edges a1, . . . aj are adjacent in the
cyclic ordering at v. Let G′ be a graph formed by introducing a new vertex w and
new edge e0 to G from v to w so that the edges at w are e0 and a1, . . . aj as shown in
figure 10. Let g′ be the graph map obtained by taking g′(e0) = ·, and by replacing
every occurrence of an edge ai for 1 6 i 6 j in an image g(e) with the edge-path
e0ai.

The moves of edge tightening and vertex homotopy do not affect the graph (G,W ), but
change the map g to a new map g′. The moves of edge collapsing and vertex splitting are
inverse operations and change a graph G to a graph G′.

The following moves can all be expressed in terms of the basic moves described above.

Vertex tightening A vertex homotopy across e0 is a tightening if ∂g(ei) = e0 for all
i = 1, . . . n.
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Figure 10: (a) Before and (b) after a vertex splitting.

Collapsing an invariant forest If H ⊂ G is an invariant forest of expanding edges,
collapse every edge of H to a point.

Tidying Perform edge tightenings, vertex tightenings, and collapsing invariant forests
until no further tightening or collapsing is possible, with the exception that we
never collapse peripheral edges at this stage (even if they have a trivial image).

Valence-3 homotopy Suppose v is a valence-3 vertex with incident edges e1, e2 and e3

such that g(ei) = e0εi for i = 1, 2 and g(e3) = ε3. Homotope v across e0 and to give
g′(ei) = εi for i = 1, 2 and g′(e3) = ē0ε3.

Folding Suppose there are edges e1 � e2 at a vertex v with valence at least 4 such that
g(e1) = ε0ε1 and g(e2) = ε0ε2. First split off e1 and e2 to a new vertex w with new
edge e0 from v to w. Then perform any possible edge tightenings to give a graph
map g′ with g′(e0) = ·, g′(e1) = ε′0ε

′
1 and g′(e2) = ε′0ε

′
2. Finally, homotope at w

across the edge-path ε′0 to obtain a graph map g′′ with g′′(e0) = ε0, g′′(e1) = ε1 and
g′′(e2) = ε2.

We say a graph map is tight if no edge or vertex tightenings are possible. A tight graph
map is tidy if it has no invariant forest of expanding edges, and every valence-2 vertex is
an endpoint of a control edge. Performing the tidying operation leave a nice graph map
to use as a starting point for the more complicated moves of vertex homotopy and edge
splitting.

We measure the complexity of a graph map by its zeta functions.

Definition 4.6 (Zeta function) Let g be a graph map of a graph G and H an invariant
subgraph. The H-length of an edge path ε, denoted |H|ε is the number of occurrences of
an edge of H in ε. The H-norm and the control zeta function of g are given respectively
by

|g|H =
∑

e∈E(G)

|H|g(e) and ζg;H(t) =
∞∑

n=0

|gn|H tn.

It is straightforward to show that if every invariant subgraph of G contains an edge in
H, then the logarithm of the asymptotic growth rate of |gn|H equals htop(g). If R is the
radius of convergence of ζg;H , then htop(g) = log(1/R).

Zeta functions are ordered by the ordering
∑∞

n=0 an tn <
∑∞

n=0 bn tn if for some k we
have ak < bk, but ai = bi for all i < k. If k 6 N , we say

∑∞

n=0 an tn <N

∑∞

n=0 bn tn.
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Equivalently, ζ1 < ζ2 if there exists ε > 0 such that ζ1(t) < ζ2(t) for all t ∈ (0, ε), and
ζ1 <N ζ2 if ζ1 + atn < ζ2 for all a > 0 and n > N .

It is clear that edge tightening, vertex tightening, edge collapsing and vertex splitting do
not increase the any graph norms, so the graph norms can only increase during a vertex
homotopy. The following key lemma shows that valence-3 homotopies also reduce the
graph norms.

Lemma 4.7 Let g be a graph map with a valence-3 vertex v which has incident edges e1,
e2 and e3 such that g(ei) = e0εi for i = 1, 2 and g(e3) = ε3, and that g′ is obtained from
g by a homotopy at v across e0. Suppose further that gn−2(e0) does not contain any edges
of H, but gn−1(e0) does. Then

1. For any k < n and any edge e of G, |H|(g′)k(e) = |H|gk(e), and |(g′)k|H = |gk|H .

2. |(g′)n|H < |gn|H

Proof: Since gk(e0) does not contain any control edges for k < n − 1, so |gk(e0)|H = 0
for these values of k. For part 1, we use induction on k. The result is trivial for k = 0.
Assume the result is true for some k < n. Then

|(g′)
k+1

(ei)|H = |(g′)
k
(εi)|H = |gk(εi)|H (by the inductive hypothesis)

= |gk(e0)g
k(εi)|H − |gk(e0)|H = |gk(e0εi)|H − |gk(e0)|H

= |gk+1(ei)|H − |gk(e0)|H for i = 1, 2

|(g′)
k+1

(e3)|H = |(g′)
k
(e0ε3)|H = |gk(e0ε3)|H = |gk(e0)|H + |gk(ε3)|H

= |gk(e3)|H + |gk(e0)|H

|(g′)
k+1

(ei)|H = |(g′)
k
(εi)|H = |gk(εi)|H = |gk+1(ei)|H otherwise.

Clearly then, |(g′)k|H =
∑

e∈G |(g′)k(e)|H =
∑

e∈G |(g′)k(e)|H = |gk|H for k < n. Part 2
follows from the above calculations since |(g′)n|H = |gn|H − |gn−1(e0)|H < |gn|H . 2

4.2 Computing a graph representative

We now give an algorithm for obtaining an optimal controlled graph map compatible with
a given trellis mapping class. If the trellis mapping class has an invariant curve reduction,
the algorithm instead finds this reduction, and we then compute a graph representative for
the irreducible components. We can process the reduction by considering the invariant
subgraph separately; see [Kei97] for details. Although the moves of the algorithm are
based on the algorithm of Bestvina and Handel [BH95], but the method is quite different.
Instead of reducing the topological entropy at each step, the algorithm reduces the zeta
function, which gives a more precise measure of the growth based on the control and
peripheral edges. This results in an algorithm where we need only consider the local
action of the graph map.

In the case of a surface mapping class, there are no control edges, and no optimal graph
map. We use a slightly different algorithm to find an efficient graph map, and consider
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a zeta function based on the peripheral edges to show that the algorithm terminates. If
there are no peripheral edges, we create temporary peripheral edges by puncturing at a
periodic orbit.

Algorithm 4.8 Suppose g is a controlled graph map. Perform the following moves,
followed by tidying (noting that tidying does not affect the peripheral subgraph), until
the graph map is optimal or there is an invariant subgraph of expanding edges which is
not a forest.

1. Fold a bad turn at a vertex of valence greater than 3, or at a control vertex.

2. Homotope at a bad turn at a free vertex of valence 3.

3. If no other moves are possible, collapse any peripheral edges which have trivial
image.

The proof of termination considers zeta functions of the graph map. We need to consider
both the control zeta function ζg;Z and the peripheral zeta function ζg;P , and also the
number of peripheral edges |P |. The standard procedure for dealing with the peripheral
subgraph P is absorbing, which yields a graph map for which there is no invariant set which
deformation-retracts onto P other than P itself. However, absorbing into the peripheral
subgraph can be accomplished by the moves of Algorithm 4.8. A fundamental observation
is that G has at most |G| = 2#(Z) − 3χ edges, where χ is the Euler characteristic, and
hence any decrease in a zeta function must occur in at most |G| coefficients.

Theorem 4.9 (Computation of the graph representative) Algorithm 4.8 terminates
at a reduction or an optimal graph map.

Proof: First note that, although it may be possible to successively decrease a zeta
function arbitrarily many times, if there exists N such that all such moves decrease the
nth coefficient for some n 6 N , then the process must terminate. In our case, we can
take n = 2#(Z) − 3ξ, the bound on the number of edges of G.

If there is an invariant subgraph which does not contain any control or peripheral edges
and is not a forest, g is irreducible and the algorithm has found a reduction. Otherwise,
every move apart from collapsing in the peripheral subgraph either reduces the control
zeta function, increases the number of peripheral edges, or decreases the peripheral zeta
function.

After collapsing peripheral edges in step 3, the link of the peripheral subgraph must be
invariant under ∂g. If there is no reduction, every expanding edge in this subgraph must
eventually map to a control edge, or else it would be contained in an invariant subgraph
of free edges with negative Euler characteristic. We may perform homotopies across pre-
peripheral edges disjoint from P which do not affect the control zeta function, but cannot
introduce new peripheral edges without homotoping across an edge in Lk(P ) At this
homotopy, the control zeta function decreases, so there is no infinite sequence of moves
which does not decrease the control zeta function. Additionally, there are at most finitely
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many moves which decrease the control zeta function. Hence the algorithm either finds a
reduction, or terminates at an optimal graph map. 2

The case of no control edges cannot be treated directly by Algorithm 4.8, since there is
no optimal graph map in the homotopy class. The proof of Theorem 4.9 fails since after
collapsing peripheral edges, all edges in Lk(P ) map to cover the entire graph, which is
itself an invariant subgraph of negative Euler characteristic which does not include any
control edges. Instead we consider the entropy in addition to the peripheral zeta function
in order to show that the algorithm finds an efficient graph representative.

Algorithm 4.10 Suppose g is a graph map compatible with a surface mapping class,
and g has nonempty peripheral subgraph P .

1. Perform Algorithm 4.8, stopping after collapsing peripheral edges in step 3.

2. If the graph map is efficient or has a reduction, the algorithm terminates. Otherwise,
repeat step 1.

3. Perform Algorithm 4.8, checking after step 3 whether the graph map is efficient, at
which point the algorithm terminates.

If there are no peripheral edges, we need to artificially introduce peripheral edges by
puncturing at a periodic orbit.

Algorithm 4.11 Suppose g is a map of a graph G with no peripheral curves. Perform
the following moves until an efficient graph map or a reduction is found.

1. Let P be a periodic orbit of g. Puncture at points of P by introducing artificial
peripheral loops at P .

2. Perform the Algorithm 4.10 for graph maps with peripheral loops.

3. Collapse the artificial peripheral loops at P and tidy. If the resulting graph map is
efficient or has a reduction, the algorithm terminates. If the resulting graph map
has peripheral loops, perform Algorithm 4.10. Otherwise, return to step 1

Theorem 4.12 Algorithms 4.10 and 4.11 terminate at a reduction or an efficient graph
map.

Proof: We first consider Algorithm 4.10. If g is not efficient, there is a turn in the
link of P which is inefficient. Folding this turn decreases entropy. Although other moves
may increase entropy, the graph map obtained by folding and homotoping can also be
obtained by the moves of the Bestvina-Handel algorithm, so the entropy must strictly
decrease. Since the entropy is bounded above, and the number of edges of g is bounded
by −3χ, there are only finitely many possible values for the entropy. Hence Algorithm 4.10
terminates.

Algorithm 4.11 terminates for similar reasons, since the entropy is bounded, and must
strictly decrease. 2
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We now give an example of computing an optimal graph map using Algorithm 4.8.

Example 4.13 (Computing the graph representative)
Consider the trellis type [f ; T ] shown in figure 11.

p

q

S3

S4S1

S2

S0

S7S9

S8

S10

S6

S5

Figure 11: A trellis with a period-2 orbit.

There are eleven stable segments, and the surface has two punctures, p and q, which are
permuted by the diffeomorphism f .
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Figure 12: An initial compatible graph

An initial compatible graph is shown in figure 12. The edge-loop p0p1 surrounds the
puncture p, and the edge-loop q0q1q2q3 surrounds the puncture q. The control edges map
under g as follows:

z0, z1, z2 7→ z0; z3 7→ z1; z4 7→ z2; z5 7→ z3; z6, z7, z8, z9, z10 7→ z4

We compute g on the expanding edges to obtain:

p0 7→ p0z̄10cz6q0; p1 7→ q1q2q3z̄6c̄z10p̄0;

q0 7→ q1; q1 7→ q2q3z̄6c̄z10p1; q2 7→ p0z̄10cz6q̄3q̄2q̄1; q3 7→ ·;

c 7→ ·; d 7→ p0z̄10cz6q̄3q̄2q̄1; e0 7→ e0; e1 7→ e0; e2 7→ e1.

Note that the edges pi and qi are not peripheral edges, since they do not form an invariant
set. However the edge-loop p0p1 maps to the edge loop p0z̄10cz6q0q1q2q3z̄6c̄z10p̄0 which is
freely homotopic to q0q1q2q3.

The edges q3, c, e1, e2 and e3 form an invariant forest which does not contain any control
edges. Each of these edges can be collapsed to a point to give the graph in figure 13. The
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Figure 13: Graph obtained by collapsing the invariant forest.

expanding edges now map

p0 7→ p0z̄10z6q0; p1 7→ q1q2z̄6z10p̄0;

q0 7→ q1; q1 7→ q2z̄6z10p1; q2, d 7→ p0z̄10z6q̄2q̄1.
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Figure 14: Restricted graph map.

The edge d has no preimage, so is not part of the restricted graph representative. We
can remove d, and also z1, z3, z5 and z8 to obtain the graph map shown in figure 14 The
control zeta function is ζg;Z(t) = 5 + 13t + 25t2 + · · ·.
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Figure 15: Graph obtained after folding

Performing five folding operations introduced edges a0, a1, b0, b1 and b4, as shown in
figure 15. Before tightening, the graph map is

p0 7→ a0p0ā1z̄10z6b̄0q0b1; p1 7→ b̄1q1b̄4b4q2b0z̄6z10a1p̄0ā0;

q0 7→ b̄1q1b̄4; q1 7→ b4q2b0z̄6z10a1p1ā0; q2 7→ a0p0ā1z̄10z6b̄0q̄2b̄4b4q̄1b1.

On performing tightenings and valence-3 homotopies, we obtain the graph map

p0 7→ q0; p1 7→ q1q2; q0 7→ ·; q1 7→ q2b0z̄6z10a1p1; q2 7→ p0ā1z̄10z6b̄0q̄2;

a0 7→ a0p0ā1z̄10z6b̄0; a1 7→ b̄1; b0 7→ q̄1b1; b1 7→ b̄4; b4 7→ a0.

Collapsing q0 and then p0 gives the graph map shown in figure 16, with

p1 7→ q1q2; q1 7→ q2b0z̄6z10a1p1; q2 7→ ā1z̄10z6b̄0q̄2;

a0 7→ a0ā1z̄10z6b̄0; a1 7→ b̄1; b0 7→ q̄1b1; b1 7→ b̄4; b4 7→ a0.
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Figure 16: Graph obtained after collapsing q0 and p0.
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Figure 17: Graph obtained after folding q1 and q2.

and control zeta function ζZ(t) = 5 + 11t + 19t2 + · · ·.

Folding q1 and q̄2 to form a new edge b2 gives the graph map shown in figure 17, with

p1 7→ b2q1q2b̄2; q1 7→ p1; q2 7→ ·;

a0 7→ a0ā1z̄10z6b̄0; a1 7→ b̄1; b0 7→ q̄1b̄2b1; b1 7→ b̄4; b2 7→ q2b̄2b0z̄6z10a1; b4 7→ a0.
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Figure 18: Graph obtained after collapsing q2.

Since now q2 has trivial image, we can collapse q2 to obtain the graph map shown in
figure 18, with

p1 7→ b2q1b̄2; q1 7→ p1;

a0 7→ a0ā1z̄10z6b̄0; a1 7→ b̄1; b0 7→ q̄1b̄2b1; b1 7→ b̄4; b2 7→ b̄2b0z̄6z10a1; b4 7→ a0.

and control zeta function ζZ(t) = 5 + 9t + 17t2 + · · ·.

Finally, we fold up p1 and q1 to give new edges a2 and b3 as shown in figure 19 The graph
map is now

p1 7→ q1; q1 7→ p1;

a0 7→ a0ā1z̄10z6b̄0; a1 7→ b̄1; a2 7→ b3b̄2

b0 7→ b̄3q̄1b3b̄2b1; b1 7→ b̄4; b2 7→ b̄2b0z̄6z10a1; b3 7→ a2; b4 7→ a0.

which is optimal. The control zeta function is ζg;Z(t) = 5 + 9t + 15t2 + · · ·. The edges p1

and q1 are peripheral edges for the graph map.

Collapsing the control edges we obtain the topological graph representative as shown in
figure 20.
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Figure 20: The optimal graph representative.

4.3 Uniqueness of graph representatives

It is clear that given an efficient graph map compatible with a trellis map, the trellis
mapping type can be reconstructed from the graph map. The converse is also true; up
to isomorphism there is only one efficient controlled graph map compatible with a given
trellis mapping class.

Proof of theorem‘4.4 (uniqueness): We first give a verifiable criterion for an exact
homotopy equivalence between two graphs to be homotopic to a homeomorphism. Sup-
pose (G1,W1) and (G2,W2) are controlled graphs, and p is an exact homotopy equivalence
between G1 and G2. Suppose there are strictly positive real functions l1 and l2 on the
edges of G1 and G2 such that whenever α1 and α2 are tight paths joining points of W
with p ◦ α1 ∼ α2 we have l1(α1) = l2(α2). (We take the distance between a point of W
and a control vertex to be half the length of the control edge.)

We claim p is homotopic to a homeomorphism from (G1,W1) to (G2,W2). To show this,

is sufficient to show that the universal covers (G̃1, W̃1) and (G̃2, W̃2) are homeomorphic.
Since W1 and W2 are homeomorphic, and G1 and G2 are homotopy-equivalent, the sets
W̃1 and W̃2 are homeomorphic, and we call them both W̃ . The functions l1 and l2 lift
naturally to G̃1 and G̃2. For any four points w̃1, w̃2, w̃3 and w̃4 in W̃ . there are only two
possibilities for the span; either it contains a valence-4 vertex or two valence-3 vertices.
Let αij be the curve from wi to wj.

Suppose the span of {w1, w2, w3, w4} contains a valence-4 vertex v as shown in Figure 21(a)
Then for i = 1, 2,

li(α12) + l(α34) = li(α13) + li(α24) = li(α14) + li(α23) = li(γ1) + li(γ2) + li(γ3) + li(γ4)

However, if the span of G{w1, w2, w3, w4} contains a valence-3 vertices v1 and v2 as shown
in Figure 21(b), we have

li(α12) + l(α34) = li(γ1) + li(γ2) + li(γ3) + li(γ4)
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Figure 21: The span of four points of W in a simply connected region can either have a
valence-4 vertex (a) or two valence-3 vertices (b).

but

li(α13) + li(α24) = li(α14) + li(α23) = li(γ1) + li(γ2) + li(γ3) + li(γ4) + 2li(γ5),

so
li(α12) + l(α34) 6 li(α13) + li(α24) = li(α14) + li(α23)

Hence the universal covers are homeomorphic by a homeomorphism h̃ homotopic to p̃.
Further, since the computations given above are equivariant, the homeomorphism h̃ is
equivariant, so projects to a homeomorphism h : (G1,W1) −→ (G2,W2). This completes
the proof of the claim.

Let p : (g1; G1) −→ (g2; G2) be an exact homotopy equivalence with homotopy inverse
q. Thus q ◦ p ∼ id, p ◦ q ∼ id and g1 ∼ q ◦ g2 ◦ p, taking homotopies relative to W . It
is clear that we can choose p and q to be mutual inverses on the control and peripheral
edges, so merely need to consider the expanding edges. We therefore make no distinctions
between control edges in G1 and G2. For any curve γ : (I, J) −→ (G,W ) for some finite
set J , we can find a curve homotopic to g ◦ γ relative to J which minimises the number
of intersections with W . It is easy to see that the exact homotopy class of such a curve
is unique up to reprarameterisation, giving a well-defined map gmin on homotopy classes
[γ] up to reparameterisation.

Let γ1 be a tight edge-path in G1, and let γ2 be the tight edge-path in G2 homotopic
to p(γ1). Consider γ1 and γ2 as exact curves (I, J0) −→ (G,W ), and take minimal
iterates under g1 and g2. Since G1 and G2 are graphs, these minimal iterates can each
be represented by a single tight edge-path. Then γ1 ∼ q ◦ p(γ1) ∼ q(γ2), so p((g1)min[γ1])
is the same homotopy class as (g2)min[γ2]. Taking further iterates gives p((g1)

n
min[γ1]) ∼

(g2)
n
min[γ2] for all n. Thus (g1)

n
min[γ1] and (g2)

n
min[γ2] contain the same number of control

and peripheral edges for all n. Since this number must be positive for all edges for some
n, we obtain a suitable function l on the expanding edges of G, and so the graphs G1 and
G2 are homeomorphic by a graph map h homotopic to p. This homeomorphism gives the
required topological conjugacy between g1 and g2. 2
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5 Global Shadowing

In this section, we discuss ways of representing the dynamics of a chaotic map using the
relation of global shadowing, which is an equivalence relation on orbits of a system which
gives a condition under which two orbits can be considered to be close to each other over
infinite time intervals. The classical definition was introduced by Katok, and is given in
terms of lifts of the map to the universal cover.

As the concept is topological in spirit, it would be useful to have a purely topological
classification. We will also be concerned with spaces which are topological pairs, and seek
a definition which extends naturally to this setting. We would also like to talk about
arbitrary sets of orbits as well as just pairs or orbits. As a frequently-recurring theme in
this work is that of homotopy classes of curves, a definition in terms of this formalism,
rather than that of universal covers will also be useful. The basic idea of our global
shadowing relation is given below. It relies on the definition of sets of curves of bounded
lengths.

Definition 5.1 (Global shadowing) Orbits (xi) and (yi) of a map f : (X,Y ) −→
(X,Y ) are said to globally shadow each other if there are sets Ji ⊂ I such that Ji ⊂ Ji+1

and exact curves αi : (I, Ji) −→ (X,Y ) from xi to yi such that f ◦αi is homotopic relative
to endpoints to αi+1 via curves (I, Ji+1) −→ (X,Y ), and the curves αi have bounded
lengths. The curves αi are called relating curves. Similarly, (xi) and (yi) forwards shadow
each other if there are shadowing curves for i > 0, and backwards shadow each other if
there are shadowing curves for i 6 0.

There are many possible definitions of the term “bounded length,” and these mostly give
identical definitions of global shadowing. In the setting of smooth curves on Riemannian
manifolds, we can use the natural definition of the length of a smooth curve. In the
definition of Katok, we consider the distance between the endpoints of lifts to a universal
cover with equivariant metric.

In the non-relative case [Han85, Boy94], periodic orbits globally shadow each other if and
only if they are Nielsen equivalent, and a homotopy between two maps induces a global
shadowing relation between their orbits by considering the fat homotopy. Both these
properties extend in a straightforward way to the relative case.

5.1 Shadowing by trellis orbits

It is important to know how the dynamics of the graph representative models that of the
trellis map. The results stated in Theorem 5.3 are analogous to the shadowing results
obtained by Handel [Han85] for surface diffeomorphisms relative to periodic orbits. We
show that orbits of g are shadowed by orbits of f , and further, that periodic, asymptotic
and biasymptotic orbits of g are shadowed by periodic, asymptotic and biasymptotic
orbits of f . The results for periodic orbits were shown in [Col99], and the results for
biasymptotic orbits are similar to those obtained by Rom-Kedar [RK94], who considered
forward iterates of strips representing homotopy classes of curves parallel to T U .

35



We assume throughout that (f ; T ) has graph representative (g; G,W ), and that (G,W )
is embedded as a subset of (CT U M, CT U T S) by an embedding i. We let π be a deformation
retract (CT U M, CT U T S) −→ (G,W ), and ft be a homotopy from Cf = f0 to f1 = i ◦ g ◦ π
with fat homotopy F . We first need to clarify what it means for an orbit of g to be
backward asymptotic to the set Z of control edges.

Definition 5.2 (Asymptotic graph orbits) An orbit (yi) of g is forward asymptotic
to Z if yj ∈ Z for some j. An orbit (yi) of g is backward asymptotic to Z if there exists
k ∈ Z and exact curves µi : (I, {0, 1}) −→ (G,W ) such that µi begins in a periodic point
of W , µi is homotopic in CT to a curve in T U , g ◦ µi ⊃ µi+1 for i < k and yi ∈ µi.

Notice that if (yi) is backward asymptotic to T P , then the α-limit set of (yi) lies in the
control set Z. The condition that the curves are homotopic to T U is crucial; otherwise,
we may have a periodic orbit of g which has α-limit set in Z, but is not shadowed by an
orbit of Cf in T U .

Theorem 5.3 (Shadowing by trellis orbits) Let (f ; T ) be a trellis mapping pair and
(g; G,W ) the graph representative of [f ; T ]. Then for any orbit (yi) of g there is an orbit
(xi) of f which globally shadows (yi) under the exact homotopy equivalence given by the
inclusion (G,W ) −→ CT . Further,

1. If (yi) is periodic, then (xi) can be chosen to be periodic.

2. If (yi) is forward asymptotic to Z for some j, then (xi) can be chosen in the stable
set of T P (so xj ∈ T S for some j).

3. If (yi) backward asymptotic to Z, then (xi) can be chosen in the unstable set of T P .

4. If (yi) is both forwards and backwards asymptotic to Z, then (xi) can be chosen to
be biasymptotic to T P .

As an immediate corollary, we have the following result on the topological entropy. It can
be shown that this entropy bound is sharp if T is well-formed, but otherwise need not be.

Corollary 5.4 (Entropy of efficient graph maps) If g is an efficient controlled graph
map compatible with (f ; T ), then htop(g) 6 htop(f).

In [Col99], it is shown that periodic orbits of g are globally shadowed by an orbit of Cf .
This proves Part 1 of Theorem 5.3, and forms the basis for all other shadowing results.
To show that all orbits of g are shadowed by orbits of f , we need to find a uniform bound
for the lengths of shadowing curves in g.

Lemma 5.5 If (xi) and (yi) are orbits of g which globally shadow each other, there are
relating curves αi from xi to yi such that the αi lie in Z, P or Pre-P .

Proof: Suppose the curves αi are tight and do not cross any control edges. Then
αi+1 = g ◦ αi for all i, so the αi are eventually periodic or disjoint. Since g has no
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invariant subgraphs apart from P , and g is expanding outside Pre-P , the αi can only be
eventually periodic if they lie in Pre-P .

If the αi do cross Z, they must eventually do so in periodic control edges. We can split
the curves into pieces that cross Z and pieces that do not. The pieces that do not must
then lie in Pre-P . 2

Proof of Theorem 5.3 (global shadowing): If (yi) is periodic, the result follows
from the relative Nielsen theory. If not, suppose there are periodic orbits (yj

i ) such that
for every i, limj→∞ yj

i = yi. We choose orbits (xj
i ) of f such that (xj

i , 0) shadows (yj
i , 1)

under F . Since M is compact, by choosing a subsequence if necessary, we can assume
the sequence xj

0 converges to a point x0 as j → ∞, and this means that xj
i converges to

xi = f i
0(x0) for all i > 0. Choosing further subsequences, we can assume further that xj

i

converges to a point xi as j → ∞ for any i < 0.

We therefore have an orbit (xi) such that xi = limj→∞ xj
i for all i. We now let πj

i be the
relating curves for (xj

i , 0) ∼ (yj
i , 1). Take an open cover U of (CT U M, CT U T S) × I by sets

U such that the components of U \ T S are simply-connected. Let βj
i and γj

i be curves
from (xi, 0) to (xj

i , 0) and from (yi, 1) to (yj
i , 1) in a component of U and V respectively,

which must exist for large enough j. Then f0 ◦ βj
i ∼ βj

i+1 and f1 ◦ γj
i ∼ γj

i+1 whenever j
is sufficiently large.

Now let αj
i = βj

i · π
j
i · γ

j
i . The curves αj

0 have bounded lengths, since they are joins from
three sets of curves which each have bounded lengths. Therefore, there must be finitely
many homotopy classes [αj

0], at least one of which must occur infinitely often. By taking
an subsequence if necessary, we can assume [αj

0] has the same value for all j. Now,

F ◦ αj
i = F ◦ βj

i · F ◦ πj
i · F ◦ γj

i ∼ βj
i+1 · π

j
i+1 · γ

j
i+1 = αj

i+1

and since this must be true whenever αj
i is defined, we have [αj

i ] is independent of j for
fixed i. By taking subsequences if necessary, we can also ensure this is the case for i
negative (or this follows automatically if F has a homotopy inverse). Hence, we have
curves αi from xi to yi of bounded lengths such that F ◦ αi ∼ αi+1. 2

5.2 Shadowing by (un)stable and biasymptotic orbits

We now show that orbits of g which enter Z are shadowed by orbits of f in W S(T P ), that
orbits backward asymptotic to Z are shadowed by orbits of f in W U (T P ), and that orbits
of g which are biasymptotic to Z are shadowed by orbits of f in W U (T P ) ∩ W S(T P ).
These results have no corresponding statements in Nielsen-Thurston theory, since we
cannot guarantee the existence of periodic saddle points in this case. Note that due to
the asymmetry in our treatment of stable and unstable curves, part (2) and part (3) are
genuinely different statements and require different proofs. We first prove an initial result
which shows that orbits of g are contained in curves with endpoints in W which map over
each other under g. If α0 : (I, J) −→ (G,W ) is a tight exact curve in G with endpoints
in W , then we write g(α0) ⊃ α1 if g(α) contains α1 as a sub-curve.
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Lemma 5.6 Let (yi) be an orbit of g. Then there is a bi-infinite sequence of exact curves
µi : (I, {0, 1}) −→ (G,W ) such that yi ∈ µi(I) and g ◦ µi contains µi+1 as a sub-curve.

Proof: First suppose that every component of G \W is homotopy-equivalent to a point
or circle. Then every pair of points of W in the same region, there are two tight curves
between them (for an homotopy circle) and one for a homotopy point. Let Γ be the set
of all these curves. Let Σn, n > 0 be the set of bi-infinite sequences of elements of Γ such
that g(γi) ⊂ γi+1 for i > −n. This is nonempty, since if yi ∈ γi, then yi+1 ∈ g(γi), and
is compact since Γ is finite. Clearly Σn+1 ⊂ Σn so the Σn form a sequence of compact
nested sets, hence Σ =

⋂∞

n=0 Σn is nonempty. Then any sequence (µi) is a sequence in γ.

Now if g is irreducible optimal graph map, there exists N such that the complement
of g−N (W ) consists of homotopy points and circles. We consider g as a self-map of
(G, g−N (W )), and let (γn) be a sequence of curves found by the previous arguments.
Then gN (γi−N) is an exact curve (I, {0, 1}) −→ (G,W ) containing (yi), and maps across
gN (γi+1−N). Therefore taking µi = gN (γi−N) gives the required bi-infinite sequence of
curves. 2

Proof of theorem 5.3 (stable orbits): Let (µi)be a sequence of exact curves
(I, {0, 1}) −→ (G,W ) such that g ◦ µi contains µi+1 as a sub-curve. and yi ∈ µi. Let
Si be the stable segment containing yi for i > 0; without loss of generality we assume
y−1 6∈ T S.

We now use recursively construct a sequence of segments Si of W S(T P ) for i < 0. Suppose
therefore for i > n (where n is negative) we have a stable segment Si of f−n(T S) with
an essential intersection with µi at a point zi and that f(Si) ⊂ Si+1. Then g ◦ µn has
an essential intersection with Sn+1 at a point zn+1, so f ◦ µn has an essential intersection
with Sn+1. Therefore, one of the segments Sn of f−1(Sn+1) is such that f ◦µn contains an
essential intersection with f(Sn) in the same intersection class as zn+1 under the homotopy
ft. Let f(zn) be this essential intersection, so that zn is an essential intersection of Sn

with µn, as shown in figure 22.

y
n

µ
n

S
n

z
n

Figure 22: Construction of zn.

The sequence of segments Sn of W S(T P ) is such that f(Sn) ⊂ Sn+1 for n < 0, so fn(Sn) ⊂
fn+1(Sn+1) ⊂ S0. Hence the sets fn(Sn) are a nested sequence of compact intervals, so
contain a limit point x0. We claim the orbit (xi) = f i(x0) globally shadows (yi) under
the homotopy ft.

We need to show that the orbits (xn, 0) and (yn, 1) globally shadow each other under
F . Let αn be a curve from (xn, 0) to (zn, 0) in Sn × {0}, βn a curve from (zn, 0) to
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(g−1(zn+1), 1) in µn+1 × I and γn the curve from (g−1(zn+1), 1) to (yn, 1) in µn(I) × {1}.
Then F ◦ αn is a curve in T S × I and F ◦ γn is a curve in µn+1 × {1}. The curve F ◦ βn

goes from (f(zn), 0) ∈ Sn+1 × {0} to (zn+1, 1) ∈ Sn+1 × {0}, and is homotopic to a curve
whose path lies in Sn+1 × I since zn+1 is an essential intersection of Sn with µn. Hence
F ◦ (αn · βn) is homotopic to a curve in Sn+1 × I from (xn+1, 0) to (zn+1, 1) and F ◦ γn

is homotopic to a curve from (zn+1, 1) to (yn+1, 1). Since βn+1 is homotopic to a curve in
{zn+1}×I joined with a curve in µn+1(I)×{1}, we have F ◦(αn ·βn ·γn) ∼ αn+1 ·βn+1 ·γn+1

as required. 2

Proof of theorem 5.3 (unstable orbits): Let (yi) be an orbit of g such that
for i 6 0 there are exact curves µi : (I, {0, 1}) −→ (G,W ) containing yi such that
g(µi) ⊃ µi+1, µi is unstable-parallel, has periodic initial vertex. For i > 0, let σi be a
cross-cut in CT which does not intersect T S, but which crosses G exactly once in the edge
containing yi. Let U0 be the segment of T U which is exact homotopic to µi. Suppose for
i 6 n, there is a segment Ui of WU (T P ) such that Ui ⊃ Ui−1 and Ui is exact homotopic
to a tight curve µi in G containing yi. Then Ui has an essential intersection zi with σi.
Since yi+1 ⊂ g ◦ µi, there must be an essential intersection of g ◦ µi with σi, and this
intersection lies in the same intersection class as an intersection zi+1 of f(Ui) with σi+1.
Let Ui+1 be the segments of W U containing zi+1, and let µi+1 be the tight curve in G
which is exact homotopic to Ui, and so yi+1 ∈ µi+1 Then the set U =

⋂∞

n=0 f−n(Un) is a
nonempty subset of T U .

We take x0 ∈ U , and (xi) = f i(x0) for i 6= 0. A similar analysis to that of the proof of
Part 2 shows that (xi) globally shadows (yi). 2

Proof of theorem 5.3 (biasymptotic orbits): Without loss of generality we can
assume that yk ∈ W , but yk−1 6∈ Z. Take σi and Ui for i < k as in the proof of Part 3,
and let σk to be the stable segment Sk containing yk. Then zk is a point in Uk ∩ Sk. We
take xi = f i−k(zk). Then a similar analysis to that of the proof of Part 2 shows that (xi)
globally shadows (yi) and gives the construction of the stable segments Si. 2
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[Soc79] Société Mathématique de France. Travaux de Thurston sur les surfaces, volume
66–67, 1979.

[SRD99] D. Sterling, H. R.Dullin, and J. D.Meiss. Homoclinic bifurcations for the hnon
map. Phys. D, 134(2):153–184, 1999.

[Thu76] William P. Thurston. On the geometry and dynamics of diffeomorphisms of
surfaces. Preprint, 1976.

[Wig91] Steven Wiggins. Chaotic Transport in Dynamical Systems. Introduction to
Applied Mathematics. Springer-Verlag, 1991.

42


