6 research outputs found

    On the Maximum Crossing Number

    Full text link
    Research about crossings is typically about minimization. In this paper, we consider \emph{maximizing} the number of crossings over all possible ways to draw a given graph in the plane. Alpert et al. [Electron. J. Combin., 2009] conjectured that any graph has a \emph{convex} straight-line drawing, e.g., a drawing with vertices in convex position, that maximizes the number of edge crossings. We disprove this conjecture by constructing a planar graph on twelve vertices that allows a non-convex drawing with more crossings than any convex one. Bald et al. [Proc. COCOON, 2016] showed that it is NP-hard to compute the maximum number of crossings of a geometric graph and that the weighted geometric case is NP-hard to approximate. We strengthen these results by showing hardness of approximation even for the unweighted geometric case and prove that the unweighted topological case is NP-hard.Comment: 16 pages, 5 figure

    Bounds of the sum of edge lengths in linear arrangements of trees

    Full text link
    A fundamental problem in network science is the normalization of the topological or physical distance between vertices, that requires understanding the range of variation of the unnormalized distances. Here we investigate the limits of the variation of the physical distance in linear arrangements of the vertices of trees. In particular, we investigate various problems on the sum of edge lengths in trees of a fixed size: the minimum and the maximum value of the sum for specific trees, the minimum and the maximum in classes of trees (bistar trees and caterpillar trees) and finally the minimum and the maximum for any tree. We establish some foundations for research on optimality scores for spatial networks in one dimension.Comment: Title changed at proof stag

    Edge crossings in random linear arrangements

    Get PDF
    In spatial networks vertices are arranged in some space and edges may cross. When arranging vertices in a 1-dimensional lattice edges may cross when drawn above the vertex sequence as it happens in linguistic and biological networks. Here we investigate the general of problem of the distribution of edge crossings in random arrangements of the vertices. We generalize the existing formula for the expectation of this number in random linear arrangements of trees to any network and derive an expression for the variance of the number of crossings in an arbitrary layout relying on a novel characterization of the algebraic structure of that variance in an arbitrary space. We provide compact formulae for the expectation and the variance in complete graphs, complete bipartite graphs, cycle graphs, one-regular graphs and various kinds of trees (star trees, quasi-star trees and linear trees). In these networks, the scaling of expectation and variance as a function of network size is asymptotically power-law-like in random linear arrangements. Our work paves the way for further research and applications in 1-dimension or investigating the distribution of the number of crossings in lattices of higher dimension or other embeddings.Comment: Generalised our theory from one-dimensional layouts to practically any type of layout. This helps study the variance of the number of crossings in graphs when their vertices are arranged on the surface of a sphere, or on the plane. Moreover, we also give closed formulae for this variance on particular types of graphs in both linear arrangements and general layout
    corecore