7 research outputs found

    Topological Additive Numbering of Directed Acyclic Graphs

    Get PDF
    We propose to study a problem that arises naturally from both Topological Numbering of Directed Acyclic Graphs, and Additive Coloring (also known as Lucky Labeling). Let DD be a digraph and ff a labeling of its vertices with positive integers; denote by S(v)S(v) the sum of labels over all neighbors of each vertex vv. The labeling ff is called \emph{topological additive numbering} if S(u)<S(v)S(u) < S(v) for each arc (u,v)(u,v) of the digraph. The problem asks to find the minimum number kk for which DD has a topological additive numbering with labels belonging to {1,,k}\{ 1, \ldots, k \}, denoted by ηt(D)\eta_t(D). We characterize when a digraph has topological additive numberings, give a lower bound for ηt(D)\eta_t(D), and provide an integer programming formulation for our problem, characterizing when its coefficient matrix is totally unimodular. We also present some families for which ηt(D)\eta_t(D) can be computed in polynomial time. Finally, we prove that this problem is \np-Hard even when its input is restricted to planar bipartite digraphs

    The inapproximability for the (0,1)-additive number

    Full text link
    An {\it additive labeling} of a graph GG is a function :V(G)N \ell :V(G) \rightarrow\mathbb{N}, such that for every two adjacent vertices v v and u u of G G , wv(w)wu(w) \sum_{w \sim v}\ell(w)\neq \sum_{w \sim u}\ell(w) (xy x \sim y means that x x is joined to yy). The {\it additive number} of G G , denoted by η(G)\eta(G), is the minimum number kk such that G G has a additive labeling :V(G)Nk \ell :V(G) \rightarrow \mathbb{N}_k. The {\it additive choosability} of a graph GG, denoted by η(G)\eta_{\ell}(G) , is the smallest number kk such that GG has an additive labeling for any assignment of lists of size kk to the vertices of GG, such that the label of each vertex belongs to its own list. Seamone (2012) \cite{a80} conjectured that for every graph GG, η(G)=η(G)\eta(G)= \eta_{\ell}(G). We give a negative answer to this conjecture and we show that for every kk there is a graph GG such that η(G)η(G)k \eta_{\ell}(G)- \eta(G) \geq k. A {\it (0,1)(0,1)-additive labeling} of a graph GG is a function :V(G){0,1} \ell :V(G) \rightarrow\{0,1\}, such that for every two adjacent vertices v v and u u of G G , wv(w)wu(w) \sum_{w \sim v}\ell(w)\neq \sum_{w \sim u}\ell(w) . A graph may lack any (0,1)(0,1)-additive labeling. We show that it is NP \mathbf{NP} -complete to decide whether a (0,1)(0,1)-additive labeling exists for some families of graphs such as perfect graphs and planar triangle-free graphs. For a graph GG with some (0,1)(0,1)-additive labelings, the (0,1)(0,1)-additive number of GG is defined as σ1(G)=minΓvV(G)(v) \sigma_{1} (G) = \min_{\ell \in \Gamma}\sum_{v\in V(G)}\ell(v) where Γ\Gamma is the set of (0,1)(0,1)-additive labelings of GG. We prove that given a planar graph that admits a (0,1)(0,1)-additive labeling, for all ε>0 \varepsilon >0 , approximating the (0,1)(0,1)-additive number within n1ε n^{1-\varepsilon} is NP \mathbf{NP} -hard.Comment: 14 pages, 3 figures, Discrete Mathematics & Theoretical Computer Scienc

    The sigma chromatic number of the Sierpinski gasket graphs and the Hanoi graphs

    Get PDF
    A vertex coloring c : V(G) → of a non-trivial connected graph G is called a sigma coloring if σ(u) ≠ σ(v) for any pair of adjacent vertices u and v. Here, σ(x) denotes the sum of the colors assigned to vertices adjacent to x. The sigma chromatic number of G, denoted by σ(G), is defined as the fewest number of colors needed to construct a sigma coloring of G. In this paper, we determine the sigma chromatic numbers of the Sierpiński gasket graphs and the Hanoi graphs. Moreover, we prove the uniqueness of the sigma coloring for Sierpiński gasket graphs

    Sigma Coloring and Edge Deletions

    Get PDF
    A vertex coloring c : V(G) → N of a non-trivial graph G is called a sigma coloring if σ(u) is not equal to σ(v) for any pair of adjacent vertices u and v. Here, σ(x) denotes the sum of the colors assigned to vertices adjacent to x. The sigma chromatic number of G, denoted by σ(G), is defined as the fewest number of colors needed to construct a sigma coloring of G. In this paper, we consider the sigma chromatic number of graphs obtained by deleting one or more of its edges. In particular, we study the difference σ(G)−σ(G−e) in general as well as in restricted scenarios; here, G−e is the graph obtained by deleting an edge e from G. Furthermore, we study the sigma chromatic number of graphs obtained via multiple edge deletions in complete graphs by considering the complements of paths and cycles

    A new approach on locally checkable problems

    Full text link
    By providing a new framework, we extend previous results on locally checkable problems in bounded treewidth graphs. As a consequence, we show how to solve, in polynomial time for bounded treewidth graphs, double Roman domination and Grundy domination, among other problems for which no such algorithm was previously known. Moreover, by proving that fixed powers of bounded degree and bounded treewidth graphs are also bounded degree and bounded treewidth graphs, we can enlarge the family of problems that can be solved in polynomial time for these graph classes, including distance coloring problems and distance domination problems (for bounded distances)
    corecore