9,439 research outputs found

    Feynman Integrals and Intersection Theory

    Full text link
    We introduce the tools of intersection theory to the study of Feynman integrals, which allows for a new way of projecting integrals onto a basis. In order to illustrate this technique, we consider the Baikov representation of maximal cuts in arbitrary space-time dimension. We introduce a minimal basis of differential forms with logarithmic singularities on the boundaries of the corresponding integration cycles. We give an algorithm for computing a basis decomposition of an arbitrary maximal cut using so-called intersection numbers and describe two alternative ways of computing them. Furthermore, we show how to obtain Pfaffian systems of differential equations for the basis integrals using the same technique. All the steps are illustrated on the example of a two-loop non-planar triangle diagram with a massive loop.Comment: 13 pages, published versio

    Densities of short uniform random walks

    Full text link
    We study the densities of uniform random walks in the plane. A special focus is on the case of short walks with three or four steps and less completely those with five steps. As one of the main results, we obtain a hypergeometric representation of the density for four steps, which complements the classical elliptic representation in the case of three steps. It appears unrealistic to expect similar results for more than five steps. New results are also presented concerning the moments of uniform random walks and, in particular, their derivatives. Relations with Mahler measures are discussed.Comment: 32 pages, 9 figure

    Discriminants and Functional Equations for Polynomials Orthogonal on the Unit Circle

    Get PDF
    We derive raising and lowering operators for orthogonal polynomials on the unit circle and find second order differential and qq-difference equations for these polynomials. A general functional equation is found which allows one to relate the zeros of the orthogonal polynomials to the stationary values of an explicit quasi-energy and implies recurrences on the orthogonal polynomial coefficients. We also evaluate the discriminants and quantized discriminants of polynomials orthogonal on the unit circle.Comment: 27 pages, Latex2e plus AMS packages Fix to Eqs. (2.72) and (2.74

    Precise Coulomb wave functions for a wide range of complex l, eta and z

    Full text link
    A new algorithm to calculate Coulomb wave functions with all of its arguments complex is proposed. For that purpose, standard methods such as continued fractions and power/asymptotic series are combined with direct integrations of the Schrodinger equation in order to provide very stable calculations, even for large values of |eta| or |Im(l)|. Moreover, a simple analytic continuation for Re(z) < 0 is introduced, so that this zone of the complex z-plane does not pose any problem. This code is particularly well suited for low-energy calculations and the calculation of resonances with extremely small widths. Numerical instabilities appear, however, when both |eta| and |Im(l)| are large and |Re(l)| comparable or smaller than |Im(l)|
    corecore