432 research outputs found

    A Review of Copyright Protection Approaches in Electronic Commerce (Watermarking Method)

    Get PDF
    Digital watermarking is the best way to protect intellectual property from illicit copying. Digital watermarks hide the identity of an image or audio file in its noise signal. A pattern of bits inserted into a digital image, audio or video file that identifies the files copyright information. The purpose of this paper is to provide copyright protection for intellectual property that\u27s in digital format. In this career we review digital watermarks an application of steganography

    A Novel Approch for Digital Image Watermarking Using Cryptography

    Get PDF
    Medicinal images can be made more secure by using enhanced watermarking technique; it allows us to embed the related information with the image, which provides secrecy, integrity and validation by embedding encrypted digital signature with the image. The diverse characteristics of watermarking algorithms are discussed in this paper. The performance evaluation of embedding the watermark in DWT domains is analyzed taking PSNR and MSE as the evaluation parameters. In this paper, data hiding and cryptographic techniques are combined into one secure simple algorithm. So, the original image is not mandatory at the time of watermark recovery. Because we insert final watermark in DWT domain, so this procedure is robust against many attacks

    Introducing keytagging, a novel technique for the protection of medical image-based tests

    Get PDF
    This paper introduces keytagging, a novel technique to protect medical image-based tests by implementing image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. It relies on the association of tags (binary data strings) to stable, semistable or volatile features of the image, whose access keys (called keytags) depend on both the image and the tag content. Unlike watermarking, this technique can associate information to the most stable features of the image without distortion. Thus, this method preserves the clinical content of the image without the need for assessment, prevents eavesdropping and collusion attacks, and obtains a substantial capacity-robustness tradeoff with simple operations. The evaluation of this technique, involving images of different sizes from various acquisition modalities and image modifications that are typical in the medical context, demonstrates that all the aforementioned security measures can be implemented simultaneously and that the algorithm presents good scalability. In addition to this, keytags can be protected with standard Cryptographic Message Syntax and the keytagging process can be easily combined with JPEG2000 compression since both share the same wavelet transform. This reduces the delays for associating keytags and retrieving the corresponding tags to implement the aforementioned measures to only ¿30 and ¿90. ms respectively. As a result, keytags can be seamlessly integrated within DICOM, reducing delays and bandwidth when the image test is updated and shared in secure architectures where different users cooperate, e.g. physicians who interpret the test, clinicians caring for the patient and researchers

    Asymptotics of Fingerprinting and Group Testing: Capacity-Achieving Log-Likelihood Decoders

    Get PDF
    We study the large-coalition asymptotics of fingerprinting and group testing, and derive explicit decoders that provably achieve capacity for many of the considered models. We do this both for simple decoders (fast but suboptimal) and for joint decoders (slow but optimal), and both for informed and uninformed settings. For fingerprinting, we show that if the pirate strategy is known, the Neyman-Pearson-based log-likelihood decoders provably achieve capacity, regardless of the strategy. The decoder built against the interleaving attack is further shown to be a universal decoder, able to deal with arbitrary attacks and achieving the uninformed capacity. This universal decoder is shown to be closely related to the Lagrange-optimized decoder of Oosterwijk et al. and the empirical mutual information decoder of Moulin. Joint decoders are also proposed, and we conjecture that these also achieve the corresponding joint capacities. For group testing, the simple decoder for the classical model is shown to be more efficient than the one of Chan et al. and it provably achieves the simple group testing capacity. For generalizations of this model such as noisy group testing, the resulting simple decoders also achieve the corresponding simple capacities.Comment: 14 pages, 2 figure

    Application of visual cryptography for learning in optics and photonics

    Get PDF
    In the age data digitalization, important applications of optics and photonics based sensors and technology lie in the field of biometrics and image processing. Protecting user data in a safe and secure way is an essential task in this area. However, traditional cryptographic protocols rely heavily on computer aided computation. Secure protocols which rely only on human interactions are usually simpler to understand. In many scenarios development of such protocols are also important for ease of implementation and deployment. Visual cryptography (VC) is an encryption technique on images (or text) in which decryption is done by human visual system. In this technique, an image is encrypted into number of pieces (known as shares). When the printed shares are physically superimposed together, the image can be decrypted with human vision. Modern digital watermarking technologies can be combined with VC for image copyright protection where the shares can be watermarks (small identification) embedded in the image. Similarly, VC can be used for improving security of biometric authentication. This paper presents about design and implementation of a practical laboratory experiment based on the concept of VC for a course in media engineering. Specifically, our contribution deals with integration of VC in different schemes for applications like digital watermarking and biometric authentication in the field of optics and photonics. We describe theoretical concepts and propose our infrastructure for the experiment. Finally, we will evaluate the learning outcome of the experiment, performed by the students

    Research on digital image watermark encryption based on hyperchaos

    Get PDF
    The digital watermarking technique embeds meaningful information into one or more watermark images hidden in one image, in which it is known as a secret carrier. It is difficult for a hacker to extract or remove any hidden watermark from an image, and especially to crack so called digital watermark. The combination of digital watermarking technique and traditional image encryption technique is able to greatly improve anti-hacking capability, which suggests it is a good method for keeping the integrity of the original image. The research works contained in this thesis include: (1)A literature review the hyperchaotic watermarking technique is relatively more advantageous, and becomes the main subject in this programme. (2)The theoretical foundation of watermarking technologies, including the human visual system (HVS), the colour space transform, discrete wavelet transform (DWT), the main watermark embedding algorithms, and the mainstream methods for improving watermark robustness and for evaluating watermark embedding performance. (3) The devised hyperchaotic scrambling technique it has been applied to colour image watermark that helps to improve the image encryption and anti-cracking capabilities. The experiments in this research prove the robustness and some other advantages of the invented technique. This thesis focuses on combining the chaotic scrambling and wavelet watermark embedding to achieve a hyperchaotic digital watermark to encrypt digital products, with the human visual system (HVS) and other factors taken into account. This research is of significant importance and has industrial application value

    Paperless Transfer of Medical Images: Storing Patient Data in Medical Images

    Get PDF
    Medical images have become an integral part ofpatient diagnosis in recent years. With the introduction of HealthInformation Management Systems (HIMS) used for the storageand sharing of patient data, as well as the use of the PictureArchiving and Communication Systems (PACS) formanipulating and storage of CT Scans, X-rays, MRIs and othermedical images, the security of patient data has become a seriousconcern for medical professionals. The secure transfer of theseimages along with patient data is necessary for maintainingconfidentiality as required by the Data Protection Act, 2011 inTrinidad and Tobago and similar legislation worldwide. Tofacilitate this secure transfer, different digital watermarking andsteganography techniques have been proposed to safely hideinformation in these digital images. This paper focuses on theamount of data that can be embedded into typical medical imageswithout compromising visual quality. In addition, ExploitingModification Direction (EMD) is selected as the method of choicefor hiding information in medical images and it is compared tothe commonly used Least Significant Bit (LSB) method.Preliminary results show that by using EMD there little to nodistortion even at the highest embedding capacity

    Ensuring the security and privacy of information in mobile health-care communication systems

    Get PDF
    The sensitivity of health-care information and its accessibility via the Internet and mobile technology systems is a cause for concern in these modern times. The privacy, integrity and confidentiality of a patient’s data are key factors to be considered in the transmission of medical information for use by authorised health-care personnel. Mobile communication has enabled medical consultancy, treatment, drug administration and the provision of laboratory results to take place outside the hospital. With the implementation of electronic patient records and the Internet and Intranets, medical information sharing amongst relevant health-care providers was made possible. But the vital issue in this method of information sharing is security: the patient’s privacy, as well as the confidentiality and integrity of the health-care information system, should not be compromised. We examine various ways of ensuring the security and privacy of a patient’s electronic medical information in order to ensure the integrity and confidentiality of the information

    Using digital watermarking to enhance security in wireless medical image transmission

    Get PDF
    This is the published version of the article. Copyright 2010 Mary Ann Liebert Inc.During the last few years, wireless networks have been increasingly used both inside hospitals and in patients’ homes to transmit medical information. In general, wireless networks suffer from decreased security. However, digital watermarking can be used to secure medical information. In this study, we focused on combining wireless transmission and digital watermarking technologies to better secure the transmission of medical images within and outside the hospital. Methods: We utilized an integrated system comprising the wireless network and the digital watermarking module to conduct a series of tests. Results: The test results were evaluated by medical consultants. They concluded that the images suffered no visible quality degradation and maintained their diagnostic integrity. Discussion: The proposed integrated system presented reasonable stability, and its performance was comparable to that of a fixed network. This system can enhance security during the transmission of medical images through a wireless channel.The General Secretariat for Research and Technology of the Hellenic Ministry of Development and the British Council
    • …
    corecore