50 research outputs found

    Efficient hardware implementations of high throughput SHA-3 candidates keccak, luffa and blue midnight wish for single- and multi-message hashing

    Get PDF
    In November 2007 NIST announced that it would organize the SHA-3 competition to select a new cryptographic hash function family by 2012. In the selection process, hardware performances of the candidates will play an important role. Our analysis of previously proposed hardware implementations shows that three SHA-3 candidate algorithms can provide superior performance in hardware: Keccak, Luffa and Blue Midnight Wish (BMW). In this paper, we provide efficient and fast hardware implementations of these three algorithms. Considering both single- and multi-message hashing applications with an emphasis on both speed and efficiency, our work presents more comprehensive analysis of their hardware performances by providing different performance figures for different target devices. To our best knowledge, this is the first work that provides a comparative analysis of SHA-3 candidates in multi-message applications. We discover that BMW algorithm can provide much higher throughput than previously reported if used in multi-message hashing. We also show that better utilization of resources can increase speed via different configurations. We implement our designs using Verilog HDL, and map to both ASIC and FPGA devices (Spartan3, Virtex2, and Virtex 4) to give a better comparison with those in the literature. We report total area, maximum frequency, maximum throughput and throughput/area of the designs for all target devices. Given that the selection process for SHA3 is still open; our results will be instrumental to evaluate the hardware performance of the candidates

    Keccak

    Get PDF
    In October 2012, the American National Institute of Standards and Technology (NIST) announced the selection of Keccak as the winner of the SHA-3 Cryptographic Hash Algorithm Competition [10,11]. This concluded an open competition that was remarkable both for its magnitude and the involvement of the cryptographic community. Public review is of paramount importance to increase the confidence in the new standard and to favor its quick adoption. The SHA-3 competition explicitly took this into account by giving open access to the candidate algorithms and everyone in the cryptographic community could try to break them, compare their performance, or simply give comments

    Kyber terminates

    Get PDF
    The key generation of the lattice-based key-encapsulation mechanism CRYSTALS-Kyber (or short, just Kyber) involves a rejection-sampling routine to produce coefficients modulo q=3329q=3329 that look uniformly random. The input to this rejection sampling is output of the SHAKE-128 extendable output function (XOF). If this XOF is modelled as a random oracle with infinite output length, it is easy to see that Kyber terminates with probability 1; also, in this model, for any upper bound on the running time, the probability of termination is strictly smaller than 1. In this short note we show that an (unconditional) upper bound for the running time for Kyber exists. Computing a tight upper bound, however, is (likely to be) infeasible. We remark that the result has no real practical value, except that it may be useful for computer-assisted reasoning about Kyber using tools that require a simple proof of termination

    New Second Preimage Attacks on Dithered Hash Functions with Low Memory Complexity

    Get PDF
    Dithered hash functions were proposed by Rivest as a method to mitigate second preimage attacks on Merkle-Damgard hash functions. Despite that, second preimage attacks against dithered hash functions were proposed by Andreeva et al. One issue with these second preimage attacks is their huge memory requirement in the precomputation and the online phases. In this paper, we present new second preimage attacks on the dithered Merkle-Damgard construction. These attacks consume significantly less memory in the online phase (with a negligible increase in the online time complexity) than previous attacks. For example, in the case of MD5 with the Keranen sequence, we reduce the memory complexity from about 2^51 blocks to about 2^26.7 blocks (about 545 MB). We also present an essentially memoryless variant of Andreeva et al. attack. In case of MD5-Keranen or SHA1-Keranen, the offline and online memory complexity is 2^15.2 message blocks (about 188–235 KB), at the expense of increasing the offline time complexity

    Slide Attacks on a Class of Hash Functions

    Get PDF
    Abstract. This paper studies the application of slide attacks to hash functions. Slide attacks have mostly been used for block cipher cryptanalysis. But, as shown in the current paper, they also form a potential threat for hash functions, namely for sponge-function like structures. As it turns out, certain constructions for hash-function-based MACs can be vulnerable to forgery and even to key recovery attacks. In other cases, we can at least distinguish a given hash function from a random oracle. To illustrate our results, we describe attacks against the Grindahl-256 and Grindahl-512 hash functions. To the best of our knowledge, this is the first cryptanalytic result on Grindahl-512. Furthermore, we point out a slide-based distinguisher attack on a slightly modified version of RadioGatún. We finally discuss simple countermeasures as a defense against slide attacks. Key words: slide attacks, hash function, Grindahl, RadioGatún, MAC, sponge function.

    MOIM: a novel design of cryptographic hash function

    Get PDF
    A hash function usually has two main components: a compression function or permutation function and mode of operation. In this paper, we propose a new concrete novel design of a permutation based hash functions called MOIM. MOIM is based on concatenating two parallel fast wide pipe constructions as a mode of operation designed by Nandi and Paul, and presented at Indocrypt 2010 where the size of the internal state is significantly larger than the size of the output. And the permutations functions used in MOIM are inspired from the SHA-3 finalist Grøstl hash function which is originally inspired from Rijndael design (AES). As a consequence there is a very strong confusion and diffusion in MOIM. Also, we show that MOIM resists all the generic attacks and Joux attack in two defense security levels

    Indifferentiability of SKINNY-HASH Internal Functions

    Get PDF
    We provide a formal proof for the indifferentiability of SKINNY-HASH internal function from a random oracle. SKINNY-HASH is a family of function-based sponge hash functions, and it was selected as one of the second round candidates of the NIST lightweight cryptography competition. Its internal function is constructed from the tweakable block cipher SKINNY. The construction of the internal function is very simple and the designers claim nn-bit security, where nn is the block length of SKINNY. However, a formal security proof of this claim is not given in the original specification of SKINNY-HASH. In this paper, we formally prove that the internal function of SKINNY-HASH has nn-bit security, i.e., it is indifferentiable from a random oracle up to O(2n)O(2^n) queries, substantiating the security claim of the designers

    Whirlwind: a new cryptographic hash function

    Get PDF
    A new cryptographic hash function Whirlwind is presented. We give the full specification and explain the design rationale. We show how the hash function can be implemented efficiently in software and give first performance numbers. A detailed analysis of the security against state-of-the-art cryptanalysis methods is also provided. In comparison to the algorithms submitted to the SHA-3 competition, Whirlwind takes recent developments in cryptanalysis into account by design. Even though software performance is not outstanding, it compares favourably with the 512-bit versions of SHA-3 candidates such as LANE or the original CubeHash proposal and is about on par with ECHO and MD6
    corecore