1,468 research outputs found

    Security Estimates for Quadratic Field Based Cryptosystems

    Get PDF
    We describe implementations for solving the discrete logarithm problem in the class group of an imaginary quadratic field and in the infrastructure of a real quadratic field. The algorithms used incorporate improvements over previously-used algorithms, and extensive numerical results are presented demonstrating their efficiency. This data is used as the basis for extrapolations, used to provide recommendations for parameter sizes providing approximately the same level of security as block ciphers with 80,80, 112,112, 128,128, 192,192, and 256256-bit symmetric keys

    A Survey on Homomorphic Encryption Schemes: Theory and Implementation

    Full text link
    Legacy encryption systems depend on sharing a key (public or private) among the peers involved in exchanging an encrypted message. However, this approach poses privacy concerns. Especially with popular cloud services, the control over the privacy of the sensitive data is lost. Even when the keys are not shared, the encrypted material is shared with a third party that does not necessarily need to access the content. Moreover, untrusted servers, providers, and cloud operators can keep identifying elements of users long after users end the relationship with the services. Indeed, Homomorphic Encryption (HE), a special kind of encryption scheme, can address these concerns as it allows any third party to operate on the encrypted data without decrypting it in advance. Although this extremely useful feature of the HE scheme has been known for over 30 years, the first plausible and achievable Fully Homomorphic Encryption (FHE) scheme, which allows any computable function to perform on the encrypted data, was introduced by Craig Gentry in 2009. Even though this was a major achievement, different implementations so far demonstrated that FHE still needs to be improved significantly to be practical on every platform. First, we present the basics of HE and the details of the well-known Partially Homomorphic Encryption (PHE) and Somewhat Homomorphic Encryption (SWHE), which are important pillars of achieving FHE. Then, the main FHE families, which have become the base for the other follow-up FHE schemes are presented. Furthermore, the implementations and recent improvements in Gentry-type FHE schemes are also surveyed. Finally, further research directions are discussed. This survey is intended to give a clear knowledge and foundation to researchers and practitioners interested in knowing, applying, as well as extending the state of the art HE, PHE, SWHE, and FHE systems.Comment: - Updated. (October 6, 2017) - This paper is an early draft of the survey that is being submitted to ACM CSUR and has been uploaded to arXiv for feedback from stakeholder

    Discrete logarithms in curves over finite fields

    Get PDF
    A survey on algorithms for computing discrete logarithms in Jacobians of curves over finite fields

    Practical improvements to class group and regulator computation of real quadratic fields

    Get PDF
    We present improvements to the index-calculus algorithm for the computation of the ideal class group and regulator of a real quadratic field. Our improvements consist of applying the double large prime strategy, an improved structured Gaussian elimination strategy, and the use of Bernstein's batch smoothness algorithm. We achieve a significant speed-up and are able to compute the ideal class group structure and the regulator corresponding to a number field with a 110-decimal digit discriminant

    Computing cardinalities of Q-curve reductions over finite fields

    Get PDF
    We present a specialized point-counting algorithm for a class of elliptic curves over F\_{p^2} that includes reductions of quadratic Q-curves modulo inert primes and, more generally, any elliptic curve over F\_{p^2} with a low-degree isogeny to its Galois conjugate curve. These curves have interesting cryptographic applications. Our algorithm is a variant of the Schoof--Elkies--Atkin (SEA) algorithm, but with a new, lower-degree endomorphism in place of Frobenius. While it has the same asymptotic asymptotic complexity as SEA, our algorithm is much faster in practice.Comment: To appear in the proceedings of ANTS-XII. Added acknowledgement of Drew Sutherlan

    The Q-curve construction for endomorphism-accelerated elliptic curves

    Get PDF
    We give a detailed account of the use of Q\mathbb{Q}-curve reductions to construct elliptic curves over F_p2\mathbb{F}\_{p^2} with efficiently computable endomorphisms, which can be used to accelerate elliptic curve-based cryptosystems in the same way as Gallant--Lambert--Vanstone (GLV) and Galbraith--Lin--Scott (GLS) endomorphisms. Like GLS (which is a degenerate case of our construction), we offer the advantage over GLV of selecting from a much wider range of curves, and thus finding secure group orders when pp is fixed for efficient implementation. Unlike GLS, we also offer the possibility of constructing twist-secure curves. We construct several one-parameter families of elliptic curves over F_p2\mathbb{F}\_{p^2} equipped with efficient endomorphisms for every p \textgreater{} 3, and exhibit examples of twist-secure curves over F_p2\mathbb{F}\_{p^2} for the efficient Mersenne prime p=2127−1p = 2^{127}-1.Comment: To appear in the Journal of Cryptology. arXiv admin note: text overlap with arXiv:1305.540
    • …
    corecore