4 research outputs found

    Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study

    Get PDF
    In this paper we study two models of labelled random trees that generalise the original unlabelled Schröder tree. Our new models can be seen as models for phylogenetic trees in which nodes represent species and labels encode the order of appearance of these species, and thus the chronology of evolution. One important feature of our trees is that they can be generated efficiently thanks to a dynamical, recursive construction. Our first model is an increasing tree in the classical sense (labels increase along each branch of the tree and each label appears only once). To better model phylogenetic trees, we relax the rules of labelling by allowing repetitions in the second model.For each of the two models, we provide asymptotic theorems for different characteristics of the tree (e.g. degree of the root, degree distribution, height, etc.), thus giving extensive information about the typical shapes of these trees. We also provide efficient algorithms to generate large trees efficiently in the two models. The proofs are based on a combination of analytic combinatorics, probabilistic methods, and bijective methods (we exhibit bijections between our models and well-known models of the literature such as permutations and Stirling numbers of both kinds).It turns out that even though our models are labelled, they can be specified simply in the world of ordinary generating functions. However, the resulting generating functions will be formal. Then, by applying Borel transforms the models will be amenable to techniques of analytic combinatorics

    Fringe trees, Crump-Mode-Jagers branching processes and mm-ary search trees

    Full text link
    This survey studies asymptotics of random fringe trees and extended fringe trees in random trees that can be constructed as family trees of a Crump-Mode-Jagers branching process, stopped at a suitable time. This includes random recursive trees, preferential attachment trees, fragmentation trees, binary search trees and (more generally) mm-ary search trees, as well as some other classes of random trees. We begin with general results, mainly due to Aldous (1991) and Jagers and Nerman (1984). The general results are applied to fringe trees and extended fringe trees for several particular types of random trees, where the theory is developed in detail. In particular, we consider fringe trees of mm-ary search trees in detail; this seems to be new. Various applications are given, including degree distribution, protected nodes and maximal clades for various types of random trees. Again, we emphasise results for mm-ary search trees, and give for example new results on protected nodes in mm-ary search trees. A separate section surveys results on height, saturation level, typical depth and total path length, due to Devroye (1986), Biggins (1995, 1997) and others. This survey contains well-known basic results together with some additional general results as well as many new examples and applications for various classes of random trees

    On the height of random m-ary search trees

    No full text
    A random m-ary leach tree is constructed from a random permutation of 1,..., n. A la of large numbers is obtained for the height Hn of these trees by applying the theory of branching random alks. In particular, it is sho n that Ha /log n- y in probability as n--- ~ oo, here y = y(m) is a constant depending upon m only. Interestingly, as m--- ~ 00, y(m) is asymptotic to 1/log m, the coefficient of log n in the asymptotic expression for the height of the complete m-ary search tree. This proves that for large m, random m-ary search trees behave virtually like complete m-ary trees
    corecore