201 research outputs found

    On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

    Get PDF
    In the SetDisjointness problem, a collection of m sets S_1,S_2,...,S_m from some universe U is preprocessed in order to answer queries on the emptiness of the intersection of some two query sets from the collection. In the SetIntersection variant, all the elements in the intersection of the query sets are required to be reported. These are two fundamental problems that were considered in several papers from both the upper bound and lower bound perspective. Several conditional lower bounds for these problems were proven for the tradeoff between preprocessing and query time or the tradeoff between space and query time. Moreover, there are several unconditional hardness results for these problems in some specific computational models. The fundamental nature of the SetDisjointness and SetIntersection problems makes them useful for proving the conditional hardness of other problems from various areas. However, the universe of the elements in the sets may be very large, which may cause the reduction to some other problems to be inefficient and therefore it is not useful for proving their conditional hardness. In this paper, we prove the conditional hardness of SetDisjointness and SetIntersection with bounded universe. This conditional hardness is shown for both the interplay between preprocessing and query time and the interplay between space and query time. Moreover, we present several applications of these new conditional lower bounds. These applications demonstrates the strength of our new conditional lower bounds as they exploit the limited universe size. We believe that this new framework of conditional lower bounds with bounded universe can be useful for further significant applications

    Conditional Lower Bounds for Space/Time Tradeoffs

    Full text link
    In recent years much effort has been concentrated towards achieving polynomial time lower bounds on algorithms for solving various well-known problems. A useful technique for showing such lower bounds is to prove them conditionally based on well-studied hardness assumptions such as 3SUM, APSP, SETH, etc. This line of research helps to obtain a better understanding of the complexity inside P. A related question asks to prove conditional space lower bounds on data structures that are constructed to solve certain algorithmic tasks after an initial preprocessing stage. This question received little attention in previous research even though it has potential strong impact. In this paper we address this question and show that surprisingly many of the well-studied hard problems that are known to have conditional polynomial time lower bounds are also hard when concerning space. This hardness is shown as a tradeoff between the space consumed by the data structure and the time needed to answer queries. The tradeoff may be either smooth or admit one or more singularity points. We reveal interesting connections between different space hardness conjectures and present matching upper bounds. We also apply these hardness conjectures to both static and dynamic problems and prove their conditional space hardness. We believe that this novel framework of polynomial space conjectures can play an important role in expressing polynomial space lower bounds of many important algorithmic problems. Moreover, it seems that it can also help in achieving a better understanding of the hardness of their corresponding problems in terms of time

    Correlation in Hard Distributions in Communication Complexity

    Get PDF
    We study the effect that the amount of correlation in a bipartite distribution has on the communication complexity of a problem under that distribution. We introduce a new family of complexity measures that interpolates between the two previously studied extreme cases: the (standard) randomised communication complexity and the case of distributional complexity under product distributions. We give a tight characterisation of the randomised complexity of Disjointness under distributions with mutual information kk, showing that it is Θ(n(k+1))\Theta(\sqrt{n(k+1)}) for all 0kn0\leq k\leq n. This smoothly interpolates between the lower bounds of Babai, Frankl and Simon for the product distribution case (k=0k=0), and the bound of Razborov for the randomised case. The upper bounds improve and generalise what was known for product distributions, and imply that any tight bound for Disjointness needs Ω(n)\Omega(n) bits of mutual information in the corresponding distribution. We study the same question in the distributional quantum setting, and show a lower bound of Ω((n(k+1))1/4)\Omega((n(k+1))^{1/4}), and an upper bound, matching up to a logarithmic factor. We show that there are total Boolean functions fdf_d on 2n2n inputs that have distributional communication complexity O(logn)O(\log n) under all distributions of information up to o(n)o(n), while the (interactive) distributional complexity maximised over all distributions is Θ(logd)\Theta(\log d) for 6nd2n/1006n\leq d\leq 2^{n/100}. We show that in the setting of one-way communication under product distributions, the dependence of communication cost on the allowed error ϵ\epsilon is multiplicative in log(1/ϵ)\log(1/\epsilon) -- the previous upper bounds had the dependence of more than 1/ϵ1/\epsilon

    Simplified Lower Bounds on the Multiparty Communication Complexity of Disjointness

    Get PDF
    We show that the deterministic number-on-forehead communication complexity of set disjointness for k parties on a universe of size n is Omega(n/4^k). This gives the first lower bound that is linear in n, nearly matching Grolmusz\u27s upper bound of O(log^2(n) + k^2n/2^k). We also simplify the proof of Sherstov\u27s Omega(sqrt(n)/(k2^k)) lower bound for the randomized communication complexity of set disjointness

    General Space-Time Tradeoffs via Relational Queries

    Full text link
    In this paper, we investigate space-time tradeoffs for answering Boolean conjunctive queries. The goal is to create a data structure in an initial preprocessing phase and use it for answering (multiple) queries. Previous work has developed data structures that trade off space usage for answering time and has proved conditional space lower bounds for queries of practical interest such as the path and triangle query. However, most of these results cater to only those queries, lack a comprehensive framework, and are not generalizable. The isolated treatment of these queries also fails to utilize the connections with extensive research on related problems within the database community. The key insight in this work is to exploit the formalism of relational algebra by casting the problems as answering join queries over a relational database. Using the notion of boolean {\em adorned queries} and {\em access patterns}, we propose a unified framework that captures several widely studied algorithmic problems. Our main contribution is three-fold. First, we present an algorithm that recovers existing space-time tradeoffs for several problems. The algorithm is based on an application of the {\em join size bound} to capture the space usage of our data structure. We combine our data structure with {\em query decomposition} techniques to further improve the tradeoffs and show that it is readily extensible to queries with negation. Second, we falsify two proposed conjectures in the existing literature related to the space-time lower bound for path queries and triangle detection for which we show unexpectedly better algorithms. This result opens a new avenue for improving several algorithmic results that have so far been assumed to be (conditionally) optimal. Finally, we prove new conditional space-time lower bounds for star and path queries.Comment: Appeared in WADS 2023. Comments and suggestions are always welcom

    Improved approximation for 3-dimensional matching via bounded pathwidth local search

    Full text link
    One of the most natural optimization problems is the k-Set Packing problem, where given a family of sets of size at most k one should select a maximum size subfamily of pairwise disjoint sets. A special case of 3-Set Packing is the well known 3-Dimensional Matching problem. Both problems belong to the Karp`s list of 21 NP-complete problems. The best known polynomial time approximation ratio for k-Set Packing is (k + eps)/2 and goes back to the work of Hurkens and Schrijver [SIDMA`89], which gives (1.5 + eps)-approximation for 3-Dimensional Matching. Those results are obtained by a simple local search algorithm, that uses constant size swaps. The main result of the paper is a new approach to local search for k-Set Packing where only a special type of swaps is considered, which we call swaps of bounded pathwidth. We show that for a fixed value of k one can search the space of r-size swaps of constant pathwidth in c^r poly(|F|) time. Moreover we present an analysis proving that a local search maximum with respect to O(log |F|)-size swaps of constant pathwidth yields a polynomial time (k + 1 + eps)/3-approximation algorithm, improving the best known approximation ratio for k-Set Packing. In particular we improve the approximation ratio for 3-Dimensional Matching from 3/2 + eps to 4/3 + eps.Comment: To appear in proceedings of FOCS 201
    corecore