732,686 research outputs found

    Design and fabrication of an instrument to evaluate characteristics of fluid handling capacity of wound care dressings

    Get PDF
    A novel instrument has been developed to determine the fluid handling capacity of different types of wound dressings, irrespective of their structure and composition. The instrument is developed with custom built wound bed/plate with specially designed path to control the amount and flow rate of wound exudates, simulating the actual wound alike conditions. The instrument has provision to apply compression / pressure over wound dressing while testing to similar realtime compression / pressure applied on wound dressing. The study was carried out using different types of commercially available wound dressings. It is found that the developed instrument is able to test different types of dressings effectively for fluid handling capacity. The results obtained by new instrument are found comparable with the existing methods. The existing methods give only single value of fluid handling capacity at the defined hour as compared to the new instrument which gives online continuous results from zero to 48 h. This real time data may be useful for defining the effectiveness of dressings at a particular time interval. The data obtained from the instrument can also be used to know the saturation point and change with time for a particular dressing. The repeatability of results are also proven. Also the instrument is able to test fluid handling capacity of dressings with and without pressure

    Content And Multimedia Database Management Systems

    Get PDF
    A database management system is a general-purpose software system that facilitates the processes of defining, constructing, and manipulating databases for various applications. The main characteristic of the ‘database approach’ is that it increases the value of data by its emphasis on data independence. DBMSs, and in particular those based on the relational data model, have been very successful at the management of administrative data in the business domain. This thesis has investigated data management in multimedia digital libraries, and its implications on the design of database management systems. The main problem of multimedia data management is providing access to the stored objects. The content structure of administrative data is easily represented in alphanumeric values. Thus, database technology has primarily focused on handling the objects’ logical structure. In the case of multimedia data, representation of content is far from trivial though, and not supported by current database management systems

    Geo-Adaptive Deep Spatio-Temporal predictive modeling for human mobility

    Full text link
    Deep learning approaches for spatio-temporal prediction problems such as crowd-flow prediction assumes data to be of fixed and regular shaped tensor and face challenges of handling irregular, sparse data tensor. This poses limitations in use-case scenarios such as predicting visit counts of individuals' for a given spatial area at a particular temporal resolution using raster/image format representation of the geographical region, since the movement patterns of an individual can be largely restricted and localized to a certain part of the raster. Additionally, current deep-learning approaches for solving such problem doesn't account for the geographical awareness of a region while modelling the spatio-temporal movement patterns of an individual. To address these limitations, there is a need to develop a novel strategy and modeling approach that can handle both sparse, irregular data while incorporating geo-awareness in the model. In this paper, we make use of quadtree as the data structure for representing the image and introduce a novel geo-aware enabled deep learning layer, GA-ConvLSTM that performs the convolution operation based on a novel geo-aware module based on quadtree data structure for incorporating spatial dependencies while maintaining the recurrent mechanism for accounting for temporal dependencies. We present this approach in the context of the problem of predicting spatial behaviors of an individual (e.g., frequent visits to specific locations) through deep-learning based predictive model, GADST-Predict. Experimental results on two GPS based trace data shows that the proposed method is effective in handling frequency visits over different use-cases with considerable high accuracy

    Is Argument Structure of Learner Chinese Understandable: A Corpus-Based Analysis

    Full text link
    This paper presents a corpus-based analysis of argument structure errors in learner Chinese. The data for analysis includes sentences produced by language learners as well as their corrections by native speakers. We couple the data with semantic role labeling annotations that are manually created by two senior students whose majors are both Applied Linguistics. The annotation procedure is guided by the Chinese PropBank specification, which is originally developed to cover first language phenomena. Nevertheless, we find that it is quite comprehensive for handling second language phenomena. The inter-annotator agreement is rather high, suggesting the understandability of learner texts to native speakers. Based on our annotations, we present a preliminary analysis of competence errors related to argument structure. In particular, speech errors related to word order, word selection, lack of proposition, and argument-adjunct confounding are discussed.Comment: Proceedings of the 2018 International Conference on Bilingual Learning and Teaching (ICBLT-2018

    Handling Massive N-Gram Datasets Efficiently

    Get PDF
    This paper deals with the two fundamental problems concerning the handling of large n-gram language models: indexing, that is compressing the n-gram strings and associated satellite data without compromising their retrieval speed; and estimation, that is computing the probability distribution of the strings from a large textual source. Regarding the problem of indexing, we describe compressed, exact and lossless data structures that achieve, at the same time, high space reductions and no time degradation with respect to state-of-the-art solutions and related software packages. In particular, we present a compressed trie data structure in which each word following a context of fixed length k, i.e., its preceding k words, is encoded as an integer whose value is proportional to the number of words that follow such context. Since the number of words following a given context is typically very small in natural languages, we lower the space of representation to compression levels that were never achieved before. Despite the significant savings in space, our technique introduces a negligible penalty at query time. Regarding the problem of estimation, we present a novel algorithm for estimating modified Kneser-Ney language models, that have emerged as the de-facto choice for language modeling in both academia and industry, thanks to their relatively low perplexity performance. Estimating such models from large textual sources poses the challenge of devising algorithms that make a parsimonious use of the disk. The state-of-the-art algorithm uses three sorting steps in external memory: we show an improved construction that requires only one sorting step thanks to exploiting the properties of the extracted n-gram strings. With an extensive experimental analysis performed on billions of n-grams, we show an average improvement of 4.5X on the total running time of the state-of-the-art approach.Comment: Published in ACM Transactions on Information Systems (TOIS), February 2019, Article No: 2

    Graph signal processing for machine learning: A review and new perspectives

    Get PDF
    The effective representation, processing, analysis, and visualization of large-scale structured data, especially those related to complex domains such as networks and graphs, are one of the key questions in modern machine learning. Graph signal processing (GSP), a vibrant branch of signal processing models and algorithms that aims at handling data supported on graphs, opens new paths of research to address this challenge. In this article, we review a few important contributions made by GSP concepts and tools, such as graph filters and transforms, to the development of novel machine learning algorithms. In particular, our discussion focuses on the following three aspects: exploiting data structure and relational priors, improving data and computational efficiency, and enhancing model interpretability. Furthermore, we provide new perspectives on future development of GSP techniques that may serve as a bridge between applied mathematics and signal processing on one side, and machine learning and network science on the other. Cross-fertilization across these different disciplines may help unlock the numerous challenges of complex data analysis in the modern age
    corecore