314 research outputs found

    Growing Graphs with Hyperedge Replacement Graph Grammars

    Full text link
    Discovering the underlying structures present in large real world graphs is a fundamental scientific problem. In this paper we show that a graph's clique tree can be used to extract a hyperedge replacement grammar. If we store an ordering from the extraction process, the extracted graph grammar is guaranteed to generate an isomorphic copy of the original graph. Or, a stochastic application of the graph grammar rules can be used to quickly create random graphs. In experiments on large real world networks, we show that random graphs, generated from extracted graph grammars, exhibit a wide range of properties that are very similar to the original graphs. In addition to graph properties like degree or eigenvector centrality, what a graph "looks like" ultimately depends on small details in local graph substructures that are difficult to define at a global level. We show that our generative graph model is able to preserve these local substructures when generating new graphs and performs well on new and difficult tests of model robustness.Comment: 18 pages, 19 figures, accepted to CIKM 2016 in Indianapolis, I

    Modeling Graph Languages with Grammars Extracted via Tree Decompositions

    Get PDF
    Work on probabilistic models of natural language tends to focus on strings and trees, but there is increasing interest in more general graph-shaped structures since they seem to be better suited for representing natural language semantics, ontologies, or other varieties of knowledge structures. However, while there are relatively simple approaches to defining generative models over strings and trees, it has proven more challenging for more general graphs. This paper describes a natural generalization of the n-gram to graphs, making use of Hyperedge Replacement Grammars to define generative models of graph languages.9 page(s

    Graph-Based Shape Analysis Beyond Context-Freeness

    Full text link
    We develop a shape analysis for reasoning about relational properties of data structures. Both the concrete and the abstract domain are represented by hypergraphs. The analysis is parameterized by user-supplied indexed graph grammars to guide concretization and abstraction. This novel extension of context-free graph grammars is powerful enough to model complex data structures such as balanced binary trees with parent pointers, while preserving most desirable properties of context-free graph grammars. One strength of our analysis is that no artifacts apart from grammars are required from the user; it thus offers a high degree of automation. We implemented our analysis and successfully applied it to various programs manipulating AVL trees, (doubly-linked) lists, and combinations of both

    Graph-to-Sequence Learning using Gated Graph Neural Networks

    Full text link
    Many NLP applications can be framed as a graph-to-sequence learning problem. Previous work proposing neural architectures on this setting obtained promising results compared to grammar-based approaches but still rely on linearisation heuristics and/or standard recurrent networks to achieve the best performance. In this work, we propose a new model that encodes the full structural information contained in the graph. Our architecture couples the recently proposed Gated Graph Neural Networks with an input transformation that allows nodes and edges to have their own hidden representations, while tackling the parameter explosion problem present in previous work. Experimental results show that our model outperforms strong baselines in generation from AMR graphs and syntax-based neural machine translation.Comment: ACL 201

    Graph design by graph grammar evolution

    Get PDF
    Singapor

    Generating Semantic Graph Corpora with Graph Expansion Grammar

    Full text link
    We introduce Lovelace, a tool for creating corpora of semantic graphs. The system uses graph expansion grammar as a representational language, thus allowing users to craft a grammar that describes a corpus with desired properties. When given such grammar as input, the system generates a set of output graphs that are well-formed according to the grammar, i.e., a graph bank. The generation process can be controlled via a number of configurable parameters that allow the user to, for example, specify a range of desired output graph sizes. Central use cases are the creation of synthetic data to augment existing corpora, and as a pedagogical tool for teaching formal language theory.Comment: In Proceedings NCMA 2023, arXiv:2309.0733

    An Empirical Study of Graph Grammar Evolution

    Get PDF
    Vukovar, Croati
    • …
    corecore