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Abstract— Determining the optimal topology of a graph is

pertinent to many domains, as graphs can be used to model

a variety of systems. Evolutionary algorithms constitute a

popular optimization method, but scalability is a concern with

larger graph designs. Generative representation schemes, often

inspired by biological development, seek to address this by

facilitating the discovery and reuse of design dependencies and

allowing for adaptable exploration strategies. We present a

novel developmental method for optimizing graphs that is based

on the notion of directly evolving a hypergraph grammar from

which a population of graphs can be derived. A multi-objective

design system is established and evaluated on problems from

three domains: symbolic regression, circuit design, and neural

control. The observed performance compares favorably with

existing methods, and extensive reuse of subgraphs contributes

to the efficient representation of solutions. Constraints can also

be placed on the type of explored graph spaces, ranging from

tree to pseudograph. We show that more compact solutions

are attainable in less constrained spaces, although convergence

typically improves with more constrained designs.

I. INTRODUCTION

Natural and artificial instances of systems that can be

represented as graphs are ubiquitous and many problems

of practical interest may be formulated as questions about

graphs. While a variety of graphs are the product of self-

organization, other graphs, such as the circuit of a micro-

processor, require to be designed. With competent human

designers an ever scarce resource, automatic design of graphs

is therefore eminently useful. Evolutionary algorithms (EAs)

are a class of heuristic optimization algorithms that have

been applied to various problems, including design. However,

they often scale poorly with the combinatorial explosion of

configurations that exist for large graphs. Yet a large graph is

not necessarily complex, and this is where self-organization

can benefit even the designer. A few simple rules can describe

a huge graph if it exhibits some form of regularity. A

precedent exists in biological development, where genes (the

rules) are expressed into a complex organism (the graph).

This paper begins with a general review of the evolu-

tionary optimization of graph designs and, in particular, the

application of developmental methods in this context. We

then introduce a simple approach adapted from the formal

technique of hyperedge replacement and combine it with a

novel algorithm for grammar evolution to produce a design

system titled G/GRADE (Graph GRAmmar Design by Evo-

lution), which can capture patterns in evolved graph designs

and facilitate their reuse in new solution candidates. As this
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constitutes a notable step beyond the existing emphasis in

EAs on string and tree data structures, we explore the benefits

and drawbacks of generalizing to graphs and compare results

to other established techniques.

II. BACKGROUND

A directed graph is a quadruple (V, E, s, t) where V is

a finite set of vertices, E is a finite set of edges, and

s, t : E → V assign a source s(e) and a target t(e) to

each e ∈ E. Pseudographs are graphs that exhibit loops

joining a vertex to itself or multiple edges connecting the

same pair of vertices. We will refer to solution candidates

as networks, independent of whether they describe simple

graphs or pseudographs, except when the distinction is rel-

evant. The most straightforward representation of a network

is to directly encode it as an adjacency matrix, the rows of

which can be concatenated into a string for optimization by

a genetic algorithm. As the string scales with the size of the

network rather than its complexity, however, large networks

become difficult to optimize even if they exhibit symmetry

– a property common to many useful designs.

A. Biological Embryogeny

Biological designs exploit symmetries by employing a

generative, highly indirect mapping between the evolved

(genotype) and evaluated (phenotype) representations. The

developmental process that mediates this, commonly also

referred to as an embryogeny [1], is characterized by

polygeny (multiple genes define a single phenotypic variable)

and pleiotropy (changes to a single gene affect multiple

phenotypic variables), which respectively facilitate the neu-

trality and modularity of design. Neutrality is defined by

genotypic variations that fail to affect the phenotype, which

has implications for the evolution of evolvability, an effect

known as canalization [2]. Canalization is a form of genetic

buffering which affects the exploration strategy of evolution

by reducing the impact of new mutations and thus allowing

a build-up of hidden genetic variation. A change in the

selection objective or further variation may break down the

canalizing system and lead to more rapid directional change

than would otherwise be expected to occur. Neutral variations

therefore allow distinct exploration strategies to be encoded

in – and ultimately evolved with – the genotype [3]. In

contrast, modularity concerns the effective partition of sets

into distinct subsets that can be optimized independently

[4]. Network designs may be encoded efficiently in terms

of modules, thus reducing the dimensionality of the configu-

ration space that must be searched. In conjunction, neutrality

and modularity contribute to an adaptive evolutionary process

that we know to scale favorably with a variety of challenges.
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B. Artificial Embryogeny

Existing computational models of embryogeny differ in

their faithfulness to biology. Emphasis is often placed on

chemical or mechanical factors of cellular development. Nolfi

and Parisi [5] evolved artificial neural networks (ANNs) by

modeling the position and branching properties of axonal

trees spreading out from neurons. Fleischer [6] and Kitano

[7] established more sophisticated simulation frameworks for

this purpose, based on equations and rules describing chem-

ical reactions and changes within cells. A crucial aspect of

cellular development is gene expression, with genes forming

networks of complex interactions termed Genetic Regulatory

Networks (GRNs). Numerous notable GRN models have

been presented for the purpose of ANN evolution, e.g., [8],

[9], [10]; some recent models employ evolved programs [11]

or recurrent ANNs [12] to satisfy this role. A common issue

here is the complexity involved, which implies not only a

considerable computational cost, but also a general difficulty

in analyzing such systems (and rarity; we are not aware of

any detailed studies).

C. Grammatical Development

We suggest that a proper compromise between the power

of a realistic model and the practicality of something simpler

is to model embryogeny as a generative grammar. A formal

grammar G is a quadruple (N, T, P, S), where N and T are

finite sets of nonterminal and terminal symbols, respectively,

P is a set of production rules, and S (in N ) is an axiom

(starting symbol). Each production rule is an ordered pair

p = (P, S), where predecessor P ∈ (N ∪ T )∗ denotes a

string of symbols that is to be replaced by the successor S ∈
(N∪T )∗. The grammar G defines a formal language L of all

the strings that can be generated by a derivation (series of rule

applications) from the axiom. Production rules are typically

applied in sequence, but L-systems, originally introduced by

Lindenmayer [13] to replicate the growth characteristics of

plants, rewrite all the symbols of a string concurrently.

Kitano [14] evolved ANNs using a matrix L-system, where

each production rewrites a node or edge symbol within a

node or edge matrix into a 2 × 2 node or edge matrix.

Boers and Sprinkhuizen-Kuyper [15] used a string L-system

to also evolve ANNs by interpreting the final string that

results from a given number of rewrites as a graph. The

grammar of GENRE [16], an evolutionary design framework

based on a parametric L-system, is evolved by a simple EA

with specialized operators. Strings are rewritten and then

translated into designs, with successful application to table

designs, neural networks, and robot controllers.

Graph design as provided above is based on defining a

number of operations on graphs and considering a string

language of expressions over these operations; a ‘graph

grammar in disguise’ is established [17]. Data structures

other than strings are less common; a notable exception

is Cellular Encoding, introduced by Gruau [18], where the

rewriting rules are represented as a tree evolved by genetic

programming (GP) [19]. The nodes of the tree are references

to graph operators applied successively to develop a single

ancestor cell into a neural network. The choice of operators

imposes a bias on the kind of networks that are discovered

[20], with both node [18] and edge [21] operators having

been advocated for various applications.

D. Hyperedge Replacement

Operating directly on graphs curbs the need for predefined

graph operations, since graph operations constitute graph

replacements which can be evolved like any other graph.

Over the last 30 years a great many graph rewriting tech-

niques have been devised [22]. Hyperedge replacement is one

of the most elementary and frequently used techniques and

constitutes a solid foundation to work with, as it is rich with

theoretical results corresponding to the properties of context-

free Chomsky languages [23]. It is a type of edge rewriting

extended to hyperedges, which, unlike binary edges, may

have multiple sources and targets, s, t : E → V ∗, connecting

several vertices via a set of incoming tentacles and a set of

outgoing tentacles. A graph with hyperedges is known as a

hypergraph. Formally, a directed, labeled hypergraph over a

label set C is a quintuple (V, E, s, t, l) where:

• V is a finite set of nodes,

• E is a finite set of hyperedges,

• s : E → V ∗ assigns sources s(e) to each e ∈ E,

• t : E → V ∗ assigns targets t(e) to each e ∈ E,

• and l : E → C labels each hyperedge.

A multi-pointed hypergraph H is a hypergraph with addi-

tional begin and end nodes, which are also referred to as

the external nodes of H . Formally, a multi-pointed hyper-

graph over C is a septuple (V, E, s, t, l, begin, end) where

(V, E, s, t, l) is a hypergraph over C and begin, end ∈ V ∗

ext.

Hc is the set of all multi-pointed hypergraphs. A hypergraph

production is an ordered pair p = (A, R) with predecessor,

or left-hand side (LHS), A ∈ N and successor, or right-hand

side (LHS), R ∈ Hc. A hyperedge replacement grammar

HRG is a quadruple (N, T, P, Z) where N ∈ C and T ∈ C

are finite sets of nonterminal and terminal symbols, P is

a finite set of hypergraph productions, and Z ∈ Hc is the

axiom. Given a hyperedge e in a hypergraph H , if there is

a hypergraph production p = (e, R) and the begin and end

nodes of the multi-pointed hypergraph R match the available

attachments in H , then e may be replaced by R by handing

over each hyperedge tentacle that is attached to a begin or

end node within R to the corresponding source or target

attachment node of the replaced hyperedge e.

III. CELLULAR GRAPH GRAMMARS

It is generally presumed that the replacement is well-typed,

i.e., the hyperedge being replaced has a set of tentacles that

match the external nodes of the multi-pointed hypergraph.

However, type correctness may be difficult to maintain in

the context of evolutionary optimization, as there needs to

be scope for productions being reused within and between

solution candidates. The handover operation typically fuses

the i-th source/target with the i-th begin/end node, so type-

correctness could be ignored by simply not trying to fuse
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Fig. 1. A diagrammatic representation of a cellular production: nonterminal
NG is replaced by a cellular graph, where TA is a terminal, NB is a further
nonterminal, b and e are begin and end nodes, and s and t are source labels
and target labels of each node. Dotted arrows indicate scope.
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Fig. 2. Soft label matching involves distance-based matching on a large
set of labels (shown here as decimal numbers).

any nodes beyond those that are present, but this may lead

to position-dependent side effects if the involved hypergraphs

are later modified, e.g., during evolution.

Position independence resolves this issue, and it has pre-

viously been achieved in the Messy GA [24] by allowing the

ordering of genes within a chromosome to evolve. A similar

principle can be applied here. An identifying label l ∈ C is

assigned to each external and internal node, so that l(v) is the

label of node v. The order of nodes may be restored by using

l as an index; however, this achieves position independence

only for nodes, not for the mappings s and t, i.e., the tentacles

of the hyperedge. A solution is to extend the mappings s

and t so that the label l of the external node of the multi-

pointed hypergraph is specified; the mappings hence become

s : E(l) → V ∗ and t : E(l) → V ∗.

A directed hypergraph can be described by an incidence

structure, which contains a point for each vertex or hyperedge

of the hypergraph and a line (i, j) if vertex i of the hyper-

graph is in hyperedge j. We can store this as an adjacency list

and, to obtain position independence, decorate each vertex

and hyperedge with an identifier as above. A drawback of

this approach is that adding or deleting a single element in

this list is rarely sufficient to substantially change the graph.

We address this by encapsulating those parts of a hyperedge

or vertex that define how it attaches to other components

into a descriptive unit referred to as a cellular graph, which

is illustrated in Fig. 1.

External nodes in the cellular graph are represented as

triples (s, t, d), where s ∈ C is a source label, t ∈ C is a

target label, and d ∈ {0, 1} is the tentacle directionality,

either incoming (for begin nodes) or outgoing (for end

nodes). A cellular graph G is defined as a triple (N, T, X)
where N ∈ C is a finite set of nonterminal symbols (i.e.,

hyperedges), T ∈ C is a finite set of terminal symbols (i.e.,

internal vertices), and X is a finite set of external nodes. Gc

constitutes the set of all cellular graphs. A cellular production

is an ordered pair (A, G) with A ∈ N and G ∈ Gc. Cellular

productions can be treated as simple hypergraph productions

in a hyperedge replacement system, except that all edges

need to be explicitly defined by cellular graphs. To satisfy

this requirement, each terminal must manually be wrapped

into a user-defined cellular graph, which acts as an interface

specification. A network is constructed from a grammar

of cellular productions by replacing each nonterminal (and

terminal) by the associated cellular graph, as shown in Fig. 3.

Each cellular graph may be glued to other expressed cellular

graphs to form a cohesive network. For this, fusion between

begin and end nodes is established by finding target labels

that match source labels.

It was previously suggested that a system that can be

decomposed into modules may be more easily optimized.

For this to be practical, the representation of modules must

be accounted for. A module is expected to have minimal

dependences with components external to the module. These

dependencies usually relate to a well-specified interface of

the module that acts as a dependency bottleneck. In the

graph domain, achieving structural modularity translates into

restricting the number of vertices inside a module that have

edges to vertices outside the module. The begin and end

nodes of the multi-pointed hypergraph provide a natural

feature for restricting such edges, since it is only these nodes

that allow binding to components external to the hypergraph.

When matching labels, we thus restrict ourselves to a specific

scope for each label type. This is shown in Fig. 1 and

represents the baseline scope of a cellular graph. No label

outside the scope boundary is visible from within the cellular

graph, which, for a graph composed of many cellular graphs,

greatly reduces the number of possible sources and targets

for which labels must be matched.

The most apparent interpretation of the term “match” is to

mean that both labels are identical. However, this approach

has previously been found to perform rather poorly, and a

“soft” matching scheme has been suggested instead [25] –
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Fig. 3. An example network is derived from a cellular graph grammar over several iterations of replacement.

labels are selected from a very large set and matched with the

nearest, not necessarily identical, label. Arithmetic difference

is used here as the distance metric (see Fig. 2). Offset labels,

which add to all the labels of associated cellular graphs,

can also be applied to terminals and nonterminals. Labels

may therefore change and combine in various ways without

affecting the phenotype. Subgraphs can be partially or fully

disconnected from the host graph, allowing building blocks to

neutrally accumulate and later be activated through possibly

minor label changes.

A. Variation Operators

Cellular graphs are changed randomly during evolution

by applying simple mutations. For this, the components of

a cellular graph are organized into a list of nonterminal

symbols (hyperedges of the graph), a list of terminal symbols

(terminal nodes of the graph), a list of (s, t, 0) label triples

(begin nodes of the graph), and a list of (s, t, 1) label

triples (end nodes of the graph). Having separate lists allows

separate mutation probabilities to apply to each component

type. Two operators may be applied to each list:

• insert, which adds a new element into a random posi-

tion in the list, where the new element is defined by

randomly selecting a new symbol and new labels from

a global set of all possible choices

• remove, which randomly selects an element from the

list and deletes it

A probability is assigned to each (operation, list) pair, so

that all probabilities sum to 1. A mutation involves randomly

selecting an (operation, list) pair from these probabilities.

The above operators are supplemented by the increase recur-

sion and the decrease recursion operators, which increase or

decrease the recursion limit of the cellular production by one.

The recursion limit prevents infinite recursion by defining

the maximum recursion depth of a production calling itself

during derivation.

B. Shared Grammar Evolution

In the L-systems discussed in Section II-C, a grammar

is evolved for each population member, which has a notable

drawback: since productions need to be in the same grammar

if they reference each other, any group of interacting pro-

ductions is likely destroyed by crossover operations between

genotypes. Consequently, instead of distributing productions

across multiple grammars, G/GRADE maintains just a sin-

gle shared production set [26]. This representation is fully

deterministic, as each predecessor is unique and axioms are

specially tagged starting productions whose expression leads

to a previously evaluated network.

Evolution with G/GRADE is achieved by the algorithm

shown in Fig. 4. For every network derived from its asso-

ciated starting production, a single expressed production is

spontaneously replaced by a mutated variant. Since mutating

a production that is expressed by several different networks
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may result in greater or lesser fitness depending on the graph,

the mutations apply specifically to a single network and

nowhere else. After testing all the mutated networks, the

least fit solutions, both from the mutated set and the existing

network population, are eliminated, as are all productions not

involved in any fitter solutions.

Grammars have previously found widespread use in evolu-

tionary computation as a means of syntactic constraint [27]

or as probabilistic models [28]. These aspects of grammar

evolution are also highly relevant, but, because of limited

space here, will have to be discussed separately.

C. Multiple Objectives

A network derived from a specific starting production

may be evaluated on a given problem task and the per-

formance recorded with this starting production. However,

performance is not the only important property of networks;

size is another. We define size as the sum of terminals,

nonterminals, and external nodes of each instance of each

production expressed during network derivation. Having both

performance and size objectives implies that there is not

one optimal solution, but a set of compromises. Multi-

objective evolutionary algorithms (MOEAs) can be employed

to find this set, with the majority of recently published

MOEAs based on Pareto-domination. The implementation

for G/GRADE matches the NSGA-II [29], except that we

define population density as the distance between a solution

and its nearest neighbor. Controlling size with a MOEA has

been achieved previously, mainly for trees in GP [30].

New networks in graph grammar evolution are defined

from productions that already exist, and these must come

from somewhere. The alternative to obtaining diverse build-

ing blocks from an initialization method is to generate them

during evolution. MOEAs can facilitate diversity if we add

diversity as another objective, with the most available target

being the solution error. Two solutions i and j are regarded

as performing differently if

Sij =

{
1 if

∑C

c=0
|Eci − Ecj | > 0

0 otherwise,

where C is the number of fitness cases and Eci is the error

of solution i on fitness case c. The diversity of solution i can

be determined as an entropy over the proportion of solutions

that are different in performance,

H(i) = − log(1 −
∑N

j=0
Sij

N
). (1)

This phenotypic objective has been found to be a good

compromise between efficiency and observed performance

improvements in evolutionary convergence [26].

D. Graph Constraints

Graphs or pseudographs are the most natural representa-

tion of a solution for a variety of problems, but G/GRADE

is also capable of solving any problem that necessitates

strings or trees, since the string/tree space is a subset of

pseudograph space. The flexibility of representation may

have some benefits, e.g., the arithmetic concept of 2x can be

represented by two edges both incident on nodes representing

an adder and an x. In the absence of such shortcuts, however,

the larger search space of pseudographs is expected to

lead to slower convergence. Being able to constrain the

evolvable data structures for a given problem may hence

FUNCTION Evolve-Grammar(C,G,Pt)

C – problem cases
G – global production set
Pt – network performance statistics at generation t

while termination conditions not met do
generation t← t + 1
S ← all starting productions in G
for starting production s ∈ S do

(assume a separate S loop for each statement)
E(s)← productions expressed when deriving S
O(s)← random choice of productions from E(s)
for production o ∈ O(s) do

m← copy of o
apply mutations to m
M(s)←M(s) ∪ {m}

X(s), R(s), Pt(s)←
Derive-Graph(s,G,O(s),M(s))

for problem case c ∈ C do
Pt(s).errors ← simulate X(s) on c

for generation r ← t− 1 to t do
Pr(s).diversity ← compute diversity of Pr(s)

against all Pt and Pt−1

Nr(s) ← compute nondominance of Pr(s)
against all Pt and Pt−1

if Nt(s) within n best of N then
G← G ∪ {copy of productions in R(s)}
apply changes in R(s) to G

else
delete M(s)

if Nt−1(s) not within popmax best of N then
s.LHS loses axiom status

delete productions not called by axioms

return updated productions G, performances Pt

FUNCTION Derive-Graph(p,G,O,M)

p – expressed production
G – global production set
O – productions to be replaced with M
M – productions to replace O by

for nonterminal n ∈ p do

while i < O.length do

if O(i).LHS = n then
X, R, P ← Derive-Graph(M(i),G,O,M)

R← R ∪ {(i, M(i).LHS, s.LHS)}

else
sn← production from G with LHS = n
X, R, P ← Derive-Graph(sn, G, O, M)

if R modified then
R← R ∪ {(i, O(i).LHS, s.LHS)}

P .size ← size of network X after extension by p
return network X, replacement list R, performance P

Fig. 4. Simplified pseudocode for grammar evolution via graph
derivation with applied mutations.
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TABLE I

DEFAULT PARAMETERS FOR ALL PROBLEM TASKS. (SEE FIG. 5 FOR SOLUTION EXAMPLES.)

Binomial-3 2-bit Pole Binary

Regression Multiplier Balancing Sequence

Objective Infer the mapping y = f(x),
where f(x) is the binomial-3
polynomial (x + 1)3

Design a Boolean circuit that
multiplies 2 × 2 bit arguments
into a 4-bit number

Optimize topology and weights
of a neural network balancing 2
poles fixed to a cart moving on
a finite track

Reproduce a binary time se-
quence

Terminals 0/1/2-ary: +, -, ×, % (protected
division)

0/1/2-ary: AND, XOR neurons with transfer function
ϕ(x) = 1

1+e−4.9x

0/1/2-ary: AND, XOR

Fitness

Case(s)

21 equidistant points generated
by the objective function over
the interval of x = [−1, 1]

All 16 combinations of the 4
Boolean arguments

Pole balancing setup and sim-
ulation employed in a previous
study by Stanley and Miikku-
lainen [31]

16-bit sequence given by a 4-
bit de Bruijn Counter (with
seed 0000)

Simulation Tree/Acyclic Graph: single pass;
Graph/Pseudograph: relaxed for 10 cycles

Relaxed for 3 cycles; weights
are assigned to edges by ran-
domization with a standard
Gaussian distribution (μ = 0,
σ = 1), at 0.3 probability, or
by differential evolution [32],
at 0.7 probability, with param-
eter F = 0.2 and a crossover
probability of 0.9

Simulation for 32 simulation
cycles (+4 cycles lead-in), sam-
pled every 2 cycles; to al-
low many different designs to
be synchronized with the sam-
pling rate, line delays are as-
signed to edges with a geomet-
ric probability of 0.5 of longer
delays

Error

Measure

Mean squared error Reciprocal number of cycles
both poles remain balanced

Proportion of incorrectly repro-
duced bits

Mutation A single production is selected for mutation and a single mutation is applied at a time, with insert mutations applied at twice the rate
as remove mutations, recursion mutations at half this rate again, and a geometric probability of 0.5 that further mutations are applied

Population 20 networks, each defined by a maximum of 1000 productions and 1000 terminals per production

improve on this. Cellular graph grammars naturally produce

pseudographs, as multi-edges can be formed between any

two nodes. The system can be constrained to produce simple

graphs by requiring the external nodes of a cellular graph to

always match different nodes. If the node with the closest

label has been selected before, then the next-closest node is

chosen. Maintaining this approach across all cellular graphs

ensures that no multi-edges can form, although at a penalty

to position independence.

If the solution domain demands it, an acyclic (i.e., feed-

forward) topology can also be imposed on the network by

ensuring that nonterminals are limited to only receiving

incoming edges from begin nodes, and terminals can receive

incoming edges from all nodes except directly from other

terminals. Further constraining the grammar into generating

only trees requires more than a change to label matching; the

changes to the productions themselves must be constrained.

We accomplish this by defining the proper template produc-

tions, one for each kind of terminal receiving inputs from a

number of nonterminals matching the arity of the terminal.

The templates have one output and no inputs, terminals are

added to represent each possible input, and mutations can

only change symbols, not insert or delete them.

IV. EXPERIMENTS

G/GRADE permits optimization of pseudographs, while

also maintaining the capability of competing with existing

techniques on simpler data structures. An experiment is

therefore performed to investigate the efficacy of G/GRADE

in general, but also to observe the impact of constraining

the search space from pseudographs to graphs and trees.

Four tasks described in Table I are selected that encompass

different natural requirements of the representation, although

all are known to be solvable with trees. Each task is evaluated

in tree, acyclic graph, (cyclic) graph, and pseudograph space

for up to 5000 generations or until optimal performance has

been obtained. Results are averaged over 100 independent

runs and presented in Table II. Statistical significance (at

p < .01), where mentioned in the text, is determined using

a non-parametric Wilcoxon rank sum test on the error mean

of the best solutions.

V. RESULTS

The best results on all problems apart from the pole bal-

ancing are obtained by constraining the search to trees, which

is significantly superior to using cyclic designs. Exploring

the space of acyclic graphs performs comparably well and is

only significantly worse than searching trees on the multiplier

circuit and, again, the pole balancing. Pole balancing is

indeed the only problem which favors a cyclic design, as the

solution can be evolved in a single production. Convergence

is thus mainly dependent on the weight evolution scheme,

which, however, was not the focus of our efforts here, so

these results remain inferior to another recent, specialized

pole balancing system requiring a minimum computational

effort (MCE) of just 20,918 evaluations [33].

On the other tasks, a general trend can be observed to-

wards improved performance with stricter graph constraints.

Notably poor results with the Boolean tasks can be attributed

to the size objective, as replacing it with a dynamic size

limit has solutions grow considerably (up to 59× larger),

while performance is also significantly lifted, with perfect

success rates on the sequence task. The MCE of 34,860 on

the multiplier task, or 66,060 with a size objective, compares
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TABLE II

PERFORMANCE STATISTICS FOR ALL RUNS, USING SIZE AND DIVERSITY OBJECTIVES.

Experiment Success MCE Min Error Size (0-Error) Size (All) Verbosity

Rate ×1000 Mean Mean Mean Mean

Binomial-3

Regression

Tree 100% 4 0.0000± 0.0000 44.37± 10.88 27.43± 5.00 0.41± 0.05

Acyclic Graph 99% 29 0.0003± 0.0030 46.79± 20.08 24.72± 13.71 0.70± 0.10

Graph 77% 54 0.0062± 0.0150 27.08± 12.72 17.68± 9.09 0.83± 0.12

Pseudograph 87% 63 0.0050± 0.0171 29.34± 26.95 17.03± 5.88 0.81± 0.12

2-bit

Multiplier

Tree 99% 66 0.0003± 0.0031 115.14± 15.03 72.67± 9.65 0.33± 0.04

Acyclic Graph 16% 1937 0.0175± 0.0165 61.13± 22.50 26.18± 7.02 0.79± 0.11

Graph 4% 9648 0.0597± 0.0247 30.50± 4.93 18.46± 5.94 0.89± 0.11

Pseudograph 1% 32965 0.0738± 0.0315 32.00± 0.00 16.46± 4.44 0.90± 0.11

Pole

Balancing

Tree 46% 181 0.0013± 0.0017 96.50± 131.21 100.40± 172.44 0.63± 0.21

Acyclic Graph 9% 3912 0.0041± 0.0028 86.11± 73.42 23.58± 16.65 0.79± 0.15

Graph 87% 75 0.0003± 0.0010 17.87± 15.03 14.54± 6.05 0.93± 0.11

Pseudograph 68% 70 0.0013± 0.0025 15.63± 7.30 14.49± 5.73 0.93± 0.11

Binary

Sequence

Tree 87% 65 0.0081± 0.0211 103.41± 79.06 50.91± 23.97 0.38± 0.08

Acyclic Graph 68% 331 0.0206± 0.0308 87.40± 76.24 37.57± 17.44 0.56± 0.17

Graph 36% 633 0.0450± 0.0378 36.94± 21.34 17.59± 7.66 0.73± 0.13

Pseudograph 52% 420 0.0319± 0.0350 42.12± 24.59 18.76± 9.55 0.72± 0.14

well with the 136,080 evaluations reported with an extended

GP model using the same terminal set [34], although much

of this advantage may be due to the diversity selection that

is specific to our system. G/GRADE is also a powerful tool

for symbolic regression, as we achieve a perfect success rate

within 330 generations and a population of 20, whereas a

previous detailed study using GP obtained only 84% over

200 generations and a larger population of 500 [35].

More compact solutions are generated as we move from

stricter, acyclic graph constraints to cyclic designs. Since

fewer optimal solutions are found for the cyclic designs, this

may reflect the exponential increase in possible configura-

tions as we reduce the constraints, so only smaller solutions

are likely to be found. However, evolution operates here not

on networks but on a grammar. The effectiveness of the

grammar representation is given as its verbosity, which is

the inverse of the average production reuse over the whole

population. The overall results show that larger networks

inversely correlate with verbosity (Spearman ρ = −0.92),

but the size increase with lesser constraints is often matched

by a reduction in verbosity. Thus, for a given number of

generations and size of population, G/GRADE optimizes a

similar number of productions for each solution candidate,

with the size of the resulting graph partially dependent on

the applied graph constraints.

VI. CONCLUSION

For many design problems the most natural representation

is the graph, but it is often easier and more transparent

to evolve strings and trees. This paper introduces a novel

framework for graph evolution that emphasizes scalability

and universality, since real-world problems literally come in

all shapes and sizes. Earlier research noted that generative

representations are an appropriate starting point for this, as

they facilitate reuse of design and can incorporate a bias of

the design problem into their structure. The system presented

here is of this nature, but based on the concept of hypergraph

grammars, which allows graph transformations to be adapted

as part of the representation. Conversely, it also maintains

substantial flexibility in constraining graph spaces to suit

the problem task at hand. We provide results in support of

this approach, with problems from multiple domains and

various levels of constraint ranging from pseudograph to

tree. As might be expected, expanding the search space to

graphs for problems that can be solved with trees mostly

leads to poorer convergence properties, although also to

more compact solutions that are for at least one problem

– the pole balancing – easier to find. We hence conjecture

that graph optimization is only advantageous with problems

where a graph representation is substantially more efficient

than otherwise, for example in the case of extensive reuse or

recurrency. Future work is intended to investigate this further.

Despite the prevalent use of grammars in artificial evo-

lution, it is quite atypical to find a grammar being directly

evolved. In the context of graph design, this paper employs an

innovative technique for evolving productions of a grammar

that describes a population of solutions. Each solution is

represented by a production that calls upon other productions,

potentially shared with other solutions, to iteratively con-

struct the solution. Representational efficiency is promoted

by extensive grammatical reuse, but a downside is the

emergence of exceedingly large networks. Co-optimization

towards a size objective can inhibit this, but at a potential

cost to convergence performance. Overall, this paper should

be seen as an early milestone, with more to come, towards a

better understanding of graph evolution, grammar evolution,

and the intersection of these important new fields.
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