5,176 research outputs found

    Thermionic performance of a variable-gap cesium diminiode with a 110-single-crystal-tungsten emitter and a polycrystalline-niobium collector

    Get PDF
    Results from tests of the first variable-gap diminiode at an initial interelectrode spacing of 0.23 millimeter indicate sharply defined, relatively low ultimate power points. This characteristic supports the value of the diminiode as a well-controlled tool for thermionic-conversion research and development

    A Mean-Field Theory for Coarsening Faceted Surfaces

    Full text link
    A mean-field theory is developed for the scale-invariant length distributions observed during the coarsening of one-dimensional faceted surfaces. This theory closely follows the Lifshitz-Slyozov-Wagner theory of Ostwald ripening in two-phase systems [1-3], but the mechanism of coarsening in faceted surfaces requires the addition of convolution terms recalling the work of Smoluchowski [4] and Schumann [5] on coalescence. The model is solved by the exponential distribution, but agreement with experiment is limited by the assumption that neighboring facet lengths are uncorrelated. However, the method concisely describes the essential processes operating in the scaling state, illuminates a clear path for future refinement, and offers a framework for the investigation of faceted surfaces evolving under arbitrary dynamics. [1] I. Lifshitz, V. Slezov, Soviet Physics JETP 38 (1959) 331-339. [2] I. Lifshitz, V. Slyozov, J. Phys. Chem. Solids 19 (1961) 35-50. [3] C. Wagner, Elektrochemie 65 (1961) 581-591. [4] M. von Smoluchowski, Physikalische Zeitschrift 17 (1916) 557-571. [5] T. Schumann, J. Roy. Met. Soc. 66 (1940) 195-207

    Lamination exact relations and their stability under homogenization

    Full text link
    Relations between components of the effective tensors of composites that hold regardless of composite's microstructure are called exact relations. Relations between components of the effective tensors of all laminates are called lamination exact relations. The question of existence of sets of effective tensors of composites that are stable under lamination, but not homogenization was settled by Milton with an example in 3D elasticity. In this paper we discuss an analogous question for exact relations, where in a wide variety of physical contexts it is known (a posteriori) that all lamination exact relations are stable under homogenization. In this paper we consider 2D polycrystalline multi-field response materials and give an example of an exact relation that is stable under lamination, but not homogenization. We also shed some light on the surprising absence of such examples in most other physical contexts (including 3D polycrystalline multi-field response materials). The methods of our analysis are algebraic and lead to an explicit description (up to orthogonal conjugation equivalence) of all representations of formally real Jordan algebras as symmetric n×nn\times n matrices. For each representation we examine the validity of the 4-chain relation|a 4th degree polynomial identity, playing an important role in the theory of special Jordan algebras

    Geometry of polycrystals and microstructure

    Full text link
    We investigate the geometry of polycrystals, showing that for polycrystals formed of convex grains the interior grains are polyhedral, while for polycrystals with general grain geometry the set of triple points is small. Then we investigate possible martensitic morphologies resulting from intergrain contact. For cubic-to-tetragonal transformations we show that homogeneous zero-energy microstructures matching a pure dilatation on a grain boundary necessarily involve more than four deformation gradients. We discuss the relevance of this result for observations of microstructures involving second and third-order laminates in various materials. Finally we consider the more specialized situation of bicrystals formed from materials having two martensitic energy wells (such as for orthorhombic to monoclinic transformations), but without any restrictions on the possible microstructure, showing how a generalization of the Hadamard jump condition can be applied at the intergrain boundary to show that a pure phase in either grain is impossible at minimum energy.Comment: ESOMAT 2015 Proceedings, to appea

    Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast

    Get PDF
    The application of differential phase contrast imaging to the study of polycrystalline magnetic thin films and nanostructures has been hampered by the strong diffraction contrast resulting from the granular structure of the materials. In this paper we demonstrate how a pixelated detector has been used to detect the bright field disk in aberration corrected scanning transmission electron microscopy (STEM) and subsequent processing of the acquired data allows efficient enhancement of the magnetic contrast in the resulting images. Initial results from a charged coupled device (CCD) camera demonstrate the highly efficient nature of this improvement over previous methods. Further hardware development with the use of a direct radiation detector, the Medipix3, also shows the possibilities where the reduction in collection time is more than an order of magnitude compared to the CCD. We show that this allows subpixel measurement of the beam deflection due to the magnetic induction. While the detection and processing is data intensive we have demonstrated highly efficient DPC imaging whereby pixel by pixel interpretation of the induction variation is realised with great potential for nanomagnetic imaging

    The Formation and Coarsening of the Concertina Pattern

    Full text link
    The concertina is a magnetization pattern in elongated thin-film elements of a soft material. It is a ubiquitous domain pattern that occurs in the process of magnetization reversal in direction of the long axis of the small element. Van den Berg argued that this pattern grows out of the flux closure domains as the external field is reduced. Based on experimental observations and theory, we argue that in sufficiently elongated thin-film elements, the concertina pattern rather bifurcates from an oscillatory buckling mode. Using a reduced model derived by asymptotic analysis and investigated by numerical simulation, we quantitatively predict the average period of the concertina pattern and qualitatively predict its hysteresis. In particular, we argue that the experimentally observed coarsening of the concertina pattern is due to secondary bifurcations related to an Eckhaus instability. We also link the concertina pattern to the magnetization ripple and discuss the effect of a weak (crystalline or induced) anisotropy

    Magnetization states and switching in narrow-gapped ferromagnetic nanorings

    Full text link
    We study permalloy nanorings that are lithographically fabricated with narrow gaps that break the rotational symmetry of the ring while retaining the vortex ground state, using both micromagnetic simulations and magnetic force microscopy (MFM). The vortex chirality in these structures can be readily set with an in-plane magnetic field and easily probed by MFM due to the field associated with the gap, suggesting such rings for possible applications in storage technologies. We find that the gapped ring edge characteristics (i.e., edge profile and gap shape) are critical in determining the magnetization switching field, thus elucidating an essential parameter in the controls of devices that might incorporate such structures

    High-Resolution Photoemission Study of MgB2

    Full text link
    We have performed high-resolution photoemission spectroscopy on MgB2 and observed opening of a superconducting gap with a narrow coherent peak. We found that the superconducting gap is s-like with the gap value of 4.5 meV at 15 K. The temperature dependence (15 - 40 K) of gap value follows well the BCS form, suggesting that 2Delta/kBTc at T=0 is about 3. No pseudogap behavior is observed in the normal state. The present results strongly suggest that MgB2 is categorized into a phonon-mediated BCS superconductor in the weak-coupling regime.Comment: 3 pages, 3 figures, accepted in Physical Review Letter
    • …
    corecore