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THERMIONIC PERFORMANCE OF A VARIABLE-GAP CESIUM DIMINIODE WITH

A 110-SINGLE-CRYSTAL-TUNGSTEN EMITTER AND A

POLYCRYSTALLINE-NIOBIUM COLLECTOR

by James F. Morris, Arthur L. Smith, and Eugene J. Manista

Lewis Research Center

SUMMARY

Results from tests of the first variable-gap diminiode at an initial interelectrode
spacing of 0. 23 millimeter indicate sharply defined, relatively low ultimate-power
points-.

Ultimate -power points

Power density,
W/cm2

3.7
5.5
7.6

Voltage,
volts

0.25
.47
.63

Temperature, K

Emitter

1600
1800

'2000

Collector

1000 to 1050
1000 to 1050
1000 to 1050

This characteristic supports the value of the diminiode as a well-controlled tool for
thermionic-conversion research and development.

INTRODUCTION: PERFORMANCE EVALUATIONS FOR BETTER THERMIONIC DIODES

For most cesium-converter applications, greater outputs, higher efficiencies, and
lower emitter temperatures are desirable. For land and sea requirements, as well as
for space demands near or below 10 kilowatts, decreased collector temperatures are
also attractive. And for all thermionic-diode uses, economical materials, fabrication
ease, and long service lives are essential. But developing such improved cesium



converters means intensive testing of promising electrode combinations (refs. 1 and 2).
Furthermore, safe diode utilization depends on establishing statistically verified per-
formance maps for on- and off-optimum conditions - with emphasis on instabilities.
Finally, machine programs for thermionic-generator designs require simple, effective
algebraic descriptions of output characteristics like the expressions of references 3
and 4.

Achievement of these goals became possible with the use of computers to control,
collect, and correlate thermionic-diode data (refs. 5 to 13). Then a miniature guarded
planar diode further facilitated cesium-converter testing and the screening of new emit-
ters and collectors (the diminiode of refs. 14 to 17). This diminiode allows evaluations
of rare thermionic materials because its electrode diameters can be 6 millimeters or
less. In addition to smallness its advantages are simplicity, precision, cleanliness, full
instrumentation, complete calibration, ruggedness, ease of fabrication, interchange-
ability and reuse of parts, and great economy. So computers and diminiodes make prop-
er evaluation of cesium converters practical.

Initial diminiode experiments involved fixed-spacing versions with rather poorly
performing emitter and collector materials (refs. 14 and 15). But this report sum-
marizes data obtained from the first variable-gap diminiode (fig. 1). And the elec-
trode combination represents some of the best contemporary thermionic-diode practices.

Figures 2 and 3 indicate maximum-power-output conditions for a 110-
monocrystalline -tungsten emitter located 0.23 millimeter from a poly crystalline-niobium
collector. The plots summarize the separate 90-point curves for current and for power
as functions of voltage taken for each set of temperatures tested. These combinations
include 1600, 1700, 1800, 1900, and 2000 K for the emitter; 700, 800, 900, 950, 1000,
and 1100 K for the collector; and 10 K increments from 530 to 640 K for the cesium res-
ervoir. Evaluation of the 0. 23-millimeter gap first, rather than either of the spacing
extremes, made the present variable-gap-diminiode results most applicable to currently
practical thermionic-diode technology.

PROCEDURE: DIMINIODE PREPARATION AND TESTING

Electrode Processing, Assembly, and Bakeout

The variable -gap diminiode used in the present work has electrodes with high nom -
inal purities (ref. 18): 99.999 percent for the monocrystalline-110-tungsten emitter and
99.99 percent for the poly crystalline-niobium collector. Brazes with special low-vapor-
pressure fillers (ref. 19) hold these electrodes on their bases: (1) the zirconium, 22.8-
percent-ruthenium eutectic melting at approximately 1510 K for the niobium collector and
guard on their niobium, 1-percent-zirconium base and (2) the tantalum, 46-percent-



iridium eutectic melting at approximately 2220 K for the tungsten emitter on its tantalum
base. To eliminate all vapor-pressure problems the tantalum, 48. 3-per cent-osmium
eutectic melting at approximately 2630 K (ref. 19) will serve as the brazing filler for any
future diminiode emitters like tungsten, rhenium, or osmium.

After lapping and polishing, the guarded surfaces of the tungsten and the niobium
electrodes were smooth to 10 millimeter and flat except for a 10" millimeter curva-
ture at the collector edge. Subsequent cleaning, degassing, and assembly of the emitter,
collector, and envelope sections (figs. l(b) and (c)) preceded attachment by copper braz-
ing of the heating and cooling coils (fig. l(d)). Then mounting the diminiode on a vacuum -
flange insert, connecting the electric leads and tubing, and adding calibrated cesium -
reservoir and collector thermocouples prepared it for vacuum processing (figs. l(e)
and (f)).

In this procedure the bakeout, calibration, cesium insertion, and brazed closure of
the diminiode all occur in one chamber after a single pumpdown (fig. l(g) and ref. 16).
The first step is a 10-hour vacuum degassing at temperatures above those for exper-
imental operations - 2000 K for the emitter and 1100 K for the collector. K ion-gage
readings so indicate, the bakeout continues until cleanliness is assured.

Emitter-Temperature Calibration

The next vacuum-processing stage is an emitter-temperature calibration duplicating
the automatic pyrometry and optical path used in the actual performance tests. This
procedure relates the temperatures of the external tungsten-lined hohlraum to those of
the black-body hole in the emitter near its surface, exposed through the yet unblocked
cesium reservoir (fig. l(g)). Both cavities have length-to-diameter ratios greater than
5. The calibration includes combinations of emitter, collector, and cesium-reservoir
temperatures encountered during diminiode testing experiments.

Inter electrode-Spacing Calibration

Further vacuum processing involves the cathetometric calibration of the emitter,
collector gap - viewed through the still open cesium reservoir (fig. l(g)). Diminiode de-
sign calculations indicated the interelectrode spacing would change little with the thermal
variations encountered during performance evaluations. And the cathetometer revealed
no significant gap alteration for permutations over the extremes of emitter and collector
temperatures.

For the present work, electric zeroing and precision shimming checked by direct ob-
servations before vacuum processing fixed the cold interelectrode spacing at 0. 23



millimeter. Then cathetometry yielded gap measurements having a 0. 23-millimeter
mean with a 0. 015-millimeter standard deviation over all combinations of high- and low-
temperature limits for the emitter (1600 to 2000 K) and the collector (600 to 1100 K).

The local averages of the hot-gap data show no meaningful trends with the separate
emitter and collector temperatures or their differences. In fact, the characteristics of
the complete set of spacing determinations closely approach those of a normal distribu-
tion: the "skewness" is 0. 1, and the "kurtosis" is 2. 7; the corresponding Gaussian val-
ues are zero and 3. Kurtosis has fallen from favor as a gage of "peakedness. " But the
similarities of the experimental skewness and kurtosis to corresponding properties of the
normal distribution strongly suggest that random measuring errors caused the dispersion
of the hot-gap data.

Cesium Insertion

The final vacuum-processing procedures are the cesium-capsule insertion and the
brazed closure of the diminiode. For the present study, though, direct addition of un-
packaged cesium seemed more practical. Although prior multiple encapsulation is ad-
vantageous and workable (refs. 14 and 15), running liquid cesium into the diminiode and
then brazing the reservoir closed are less demanding than performing comparable oper-
ations with small molybdenum ampules (ref. 16). The lack of manpower and time to es-
tablish conditions for precision repetitive cesium packaging forced this change.

Testing

References 14 and 16 describe the stations, instrumentation, procedures, and data
presentation for the thermionic performance mapping of diminiodes.

RESULTS: 0. 23-MILLIMETER-GAP PERFORMANCE OF A

110-TUNGSTEN, NIOBIUM DIMINIODE

As previously stated, figures 2 and 3 present conditions of near-maximum power
outputs for a directly calibrated, high-purity, variable-gap lib-tungsten, niobium
diminiode operating with a 0.23-millimeter inter electrode spacing.

A cursory examination of figure 2 reveals at least two pertinent observations:
first, the power maximums as functions of collector temperature at constant emitter
temperatures vary rapidly near their indicated extremes or ultimate-power points.



These changes are more abrupt than those for the research diodes described in refer-
ences 6 to 10. And second, the diminiode temperature combinations tested missed the
ultimate-power points. The latter problem occurred because of early planning based on
references 6 to 10. There ultimate power generally developed for collectors between
900 and 950 K rather than those between 1000 and 1050 K (fig. 2).

Initial evaluations stopped when the collector heater failed, probably because of the
long, exceedingly high-temperature bakeout. Ordinarily this problem would be a minor
one. But the termination of NASA thermionic-con version work precluded further test-
ing to define the unusually accentuated maximums resulting from variations of cesium-
reservoir and collector temperatures in this diminiode. So determining the ultimate-
power points required mild extrapolations.

Because diode outputs change rapidly with cesium-reservoir temperature T£S at
constant emitter and collector temperatures TE and T^, approximations were also
necessary to locate the optimum conditions represented by the following:

Emitter

temperature,
TE'

K

1600

1600
2000

2000

Collector
temperature,

TC>
K

800

1000
800

1000

Approximate cesium
temperature,

TCs>
K

570

580

600
610

Maximum power

output,

Pmax'
W/cm2

(a)

1.7

3.6
5.8
7.5

Output
voltage,

AV,

volts
(b)

0. 19
.25
.56
.63

From fig. 2.
From fig. 3.

Fortunately, the estimated power maximums and ultimate outputs were close to meas-
ured values for most envelopes. But if the diminiode collector heater had been repaired,
saturation testing around the apparent optimum conditions would have saved much time
and labor and assured accuracy.

Perhaps the best performance measure of this 110-tungsten, niobium diminiode re-
sults from rating it relative to other similar diodes. To facilitate such a comparison
figure 4 shows optimized outputs published previously for several thermionic converters
with tungsten emitters. Reference 2 allowed the ready selection of the diodes for which
curves are shown in figure 4 (taken from refs. 12 and 20 to 25). And because refer-
ence 2 abstracts performances of these selected diodes and many others, its citation
numbers for references 12 and 20 to 25 appear in the reference list of this report for the
convenience of the reader.



A comparison of ultimate outputs from figures 2 and 3 with those of figure 4(f) for
another 110-tungsten, niobium diode indicates lower power and higher voltage for the
diminiode version:

Emitter
temperature,

TE-
K

1600
1700
1800
1900
2000

Power for
present diode,

P,
W/cm2

(a)

3.7

5. 1
5.5

5.9
7.6

Voltage for
present diode,

V,
volts

(b)

0.25
.36
.47

.55

.63

Power for diode
of ref. 23,

P,
W/cm2

(c)

3.4

5.5
6.7

7.8
9.5

Voltage for diode
of ref. 23,

V,
volts

(c)

0.25
.31
.44

.50

.54
aFrom fig. 2.
bFrom fig. 3.
cFrom fig. 4(0.

Estimated from the previous tabulation the 1840 K ultimate output for this diminiode is
5. 7 watts per square centimeter at 0. 51 volt. So ranked against the maximums of the
curves shown in figure 4(j) the present 110-tungsten, niobium diode appears to fall quite
low in the grouping.

DISCUSSION: IMPLICATIONS OF THE PRESENT DIMINIODE RESULTS

Certain aspects of the present study deserve emphasis: First, the electrodes are
very pure and well defined, and the diminiode is exceedingly clean. Second, the gap di-
mension, electrode parallelism, and emitter temperatures are highly reliable owing to
direct calibrations and checks in the assembled diminiode at operating conditions.

These points have a strong impact because small amounts of impurities and the
electrode spacing and temperatures affect cesium-diode performance significantly. In
particular, very low concentrations of oxygen increase thermionic-converter outputs
considerably. Furthermore, impurities, electrode tilting, and emitter-temperature in-
homogeneities smear out diode performance effects.

In contrast a clean, well-defined, directly calibrated thermionic converter should
produce relatively low power with more discrete output characteristics. Most cesium-
diode experts concurred with this generalization long ago. And as converter assembly
techniques grew more sophisticated, performances of standard thermionic electrodes
moved steadily downward. So in addition to the design, processing, and material im-
provements of this diminiode its sharply defined ultimate-power points at comparatively



poor outputs support its effectiveness as a well-controlled tool for thermionic-conversion
research and development.

Of course, these are interpretations based only on 0. 23-millimeter-gap results. Ef-
fects of electrode-spacing variations are also of great interest and could provide a far
more comprehensive view of the performance of this 110-tungsten, niobium diminiode.
Furthermore, all parts for several other diminiodes were entering assembly to allow the
statistical establishment of output characteristics for tungsten, niobium cesium diodes.
And for low-temperature performances potentially much higher than those of tungsten,
niobium converters, work was also under way on diminiodes with electrode materials
such as iridium and lanthanum hexaboride. But this thermionic-conversion program
ceased prior to complete evaluation of the initial interelectrode spacing for the first
variable-gap diminiode.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, August 23, 1973,
503-25.
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(b) Collector, envelope, and emitter sections of diminiode.

Figure 1. - Variable- gap diminiode.
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C-72-2858

(c) Bare assembled diminiode. (d) Diminiode with heating and cooling coils for cesium reservoir
and collector.

C-72-3962

(e) Diminiode with heating and cooling coils for reservoir and
collector and electron bombardment for emitter.

C-72-3959

(f) Fully mounted diminiode.

Figure 1. - Continued.
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Figure 2. - Power maxima for variable-gap 110-tungsten, niobium
diminiode with 0.23-millimeter interelectrode spacing.
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Figure 3. - Voltage at maximum power for variable-gap 110-tungsten,
niobium diminiode with 0. 23-millimeter interelectrode spacing.
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deposited tungsten and polycrystalline niobium; optimum col-
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lector and reservoirtemperatures; from references 20 (citation
70, ref. 21 and 2L
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(cl Diode Cj - 5, 0.2-millimetergap, chloride chemically vapor-
deposited tungsten and polycrystalline niobium; optimum col-
lector and reservoirtemperatures; from references 20 (cita-
tion 70, ref. 21 and 2L

(dl Diode C3-3, 0.2-millimetergap, chloride chemically vapor-
deposited duplex tungsten and polycrystalline niobium; optimum
collector and reservoirtemperatures; from reference 21.

Figure4. -Cesium-diodeoutput envelopes.
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(f) Diode with 0.25-millimeter gap, single-crystal 110-tungsten
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perature, 1023 K for emitter temperature of 2000 and 973 K for
all other emitter temperatures; optimum reservoir temperature;
from reference 24 (citation 105, ref. 21.

(h) Diode with 0.25-millimeter spacing, chloride chemically vapor-
deposited tungsten and polycrystalline niobium; optimum collector
and reservoir temperatures; from reference 12 (citation 122, ref.
2).

Figure4. -Continued.
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