3,418 research outputs found

    Unravelling the Impact of Temporal and Geographical Locality in Content Caching Systems

    Get PDF
    To assess the performance of caching systems, the definition of a proper process describing the content requests generated by users is required. Starting from the analysis of traces of YouTube video requests collected inside operational networks, we identify the characteristics of real traffic that need to be represented and those that instead can be safely neglected. Based on our observations, we introduce a simple, parsimonious traffic model, named Shot Noise Model (SNM), that allows us to capture temporal and geographical locality of content popularity. The SNM is sufficiently simple to be effectively employed in both analytical and scalable simulative studies of caching systems. We demonstrate this by analytically characterizing the performance of the LRU caching policy under the SNM, for both a single cache and a network of caches. With respect to the standard Independent Reference Model (IRM), some paradigmatic shifts, concerning the impact of various traffic characteristics on cache performance, clearly emerge from our results.Comment: 14 pages, 11 Figures, 2 Appendice

    Queueing models for capacity changes in cellular networks

    Get PDF
    With the rapid development of cellular communication techniques, many recent studies have focused on improving the quality of service (QoS) in cellular networks. One characteristic of the systems in cellular networks, which can have direct impact on the system QoS, is the fluctuation of the system capacity. In this thesis, the QoS of systems with capacity fluctuations is studied from two perspectives: (1) priority queueing systems with preemption, and (2) the M/M/~C/~C system. In the first part, we propose two models with controlled preemption and analyze their performance in the context of a single reference cell that supports two kinds of traffic (new calls and handoff calls). The formulae for calculating the performance measures of interest (i.e., handoff call blocking probability, new call blocking and dropping probabilities) are developed, and the procedures for solving optimization problems for the optimal number of channels required for each proposed model are established. The proposed controlled preemption models are then compared to existing non-preemption and full preemption models from the following three perspectives: (i) channel utilization, (ii) low priority call (i.e., new calls) performance, and (iii) flexibility to meet various constraints. The results showed that the proposed controlled preemption models are the best models overall. In the second part, the loss system with stochastic capacity, denoted by M/M/~C/~C, is analyzed using the Markov regenerative process (MRGP) method. Three different distributions of capacity interchange times (exponential, gamma, and Pareto) and three different capacity variation patterns (skip-free, distance-based, and uniform-based) are considered. Analytic expressions are derived to calculate call blocking and dropping probabilities and are verified by call level simulations. Finally, numerical examples are provided to determine the impact of different distributions of capacity interchange times and different capacity variation patterns on system performance

    Eigenvector Centrality Distribution for Characterization of Protein Allosteric Pathways

    Full text link
    Determining the principal energy pathways for allosteric communication in biomolecules, that occur as a result of thermal motion, remains challenging due to the intrinsic complexity of the systems involved. Graph theory provides an approach for making sense of such complexity, where allosteric proteins can be represented as networks of amino acids. In this work, we establish the eigenvector centrality metric in terms of the mutual information, as a mean of elucidating the allosteric mechanism that regulates the enzymatic activity of proteins. Moreover, we propose a strategy to characterize the range of the physical interactions that underlie the allosteric process. In particular, the well known enzyme, imidazol glycerol phosphate synthase (IGPS), is utilized to test the proposed methodology. The eigenvector centrality measurement successfully describes the allosteric pathways of IGPS, and allows to pinpoint key amino acids in terms of their relevance in the momentum transfer process. The resulting insight can be utilized for refining the control of IGPS activity, widening the scope for its engineering. Furthermore, we propose a new centrality metric quantifying the relevance of the surroundings of each residue. In addition, the proposed technique is validated against experimental solution NMR measurements yielding fully consistent results. Overall, the methodologies proposed in the present work constitute a powerful and cost effective strategy to gain insight on the allosteric mechanism of proteins

    Matching marginal moments and lag autocorrelations with MAPs

    Get PDF
    • …
    corecore