16,764 research outputs found

    Paradoxes in Fair Computer-Aided Decision Making

    Full text link
    Computer-aided decision making--where a human decision-maker is aided by a computational classifier in making a decision--is becoming increasingly prevalent. For instance, judges in at least nine states make use of algorithmic tools meant to determine "recidivism risk scores" for criminal defendants in sentencing, parole, or bail decisions. A subject of much recent debate is whether such algorithmic tools are "fair" in the sense that they do not discriminate against certain groups (e.g., races) of people. Our main result shows that for "non-trivial" computer-aided decision making, either the classifier must be discriminatory, or a rational decision-maker using the output of the classifier is forced to be discriminatory. We further provide a complete characterization of situations where fair computer-aided decision making is possible

    Quantitative multi-objective verification for probabilistic systems

    Get PDF
    We present a verification framework for analysing multiple quantitative objectives of systems that exhibit both nondeterministic and stochastic behaviour. These systems are modelled as probabilistic automata, enriched with cost or reward structures that capture, for example, energy usage or performance metrics. Quantitative properties of these models are expressed in a specification language that incorporates probabilistic safety and liveness properties, expected total cost or reward, and supports multiple objectives of these types. We propose and implement an efficient verification framework for such properties and then present two distinct applications of it: firstly, controller synthesis subject to multiple quantitative objectives; and, secondly, quantitative compositional verification. The practical applicability of both approaches is illustrated with experimental results from several large case studies

    Learning Fair Naive Bayes Classifiers by Discovering and Eliminating Discrimination Patterns

    Full text link
    As machine learning is increasingly used to make real-world decisions, recent research efforts aim to define and ensure fairness in algorithmic decision making. Existing methods often assume a fixed set of observable features to define individuals, but lack a discussion of certain features not being observed at test time. In this paper, we study fairness of naive Bayes classifiers, which allow partial observations. In particular, we introduce the notion of a discrimination pattern, which refers to an individual receiving different classifications depending on whether some sensitive attributes were observed. Then a model is considered fair if it has no such pattern. We propose an algorithm to discover and mine for discrimination patterns in a naive Bayes classifier, and show how to learn maximum likelihood parameters subject to these fairness constraints. Our approach iteratively discovers and eliminates discrimination patterns until a fair model is learned. An empirical evaluation on three real-world datasets demonstrates that we can remove exponentially many discrimination patterns by only adding a small fraction of them as constraints

    Should We Learn Probabilistic Models for Model Checking? A New Approach and An Empirical Study

    Get PDF
    Many automated system analysis techniques (e.g., model checking, model-based testing) rely on first obtaining a model of the system under analysis. System modeling is often done manually, which is often considered as a hindrance to adopt model-based system analysis and development techniques. To overcome this problem, researchers have proposed to automatically "learn" models based on sample system executions and shown that the learned models can be useful sometimes. There are however many questions to be answered. For instance, how much shall we generalize from the observed samples and how fast would learning converge? Or, would the analysis result based on the learned model be more accurate than the estimation we could have obtained by sampling many system executions within the same amount of time? In this work, we investigate existing algorithms for learning probabilistic models for model checking, propose an evolution-based approach for better controlling the degree of generalization and conduct an empirical study in order to answer the questions. One of our findings is that the effectiveness of learning may sometimes be limited.Comment: 15 pages, plus 2 reference pages, accepted by FASE 2017 in ETAP

    Distributional convergence for the number of symbol comparisons used by QuickSort

    Full text link
    Most previous studies of the sorting algorithm QuickSort have used the number of key comparisons as a measure of the cost of executing the algorithm. Here we suppose that the n independent and identically distributed (i.i.d.) keys are each represented as a sequence of symbols from a probabilistic source and that QuickSort operates on individual symbols, and we measure the execution cost as the number of symbol comparisons. Assuming only a mild "tameness" condition on the source, we show that there is a limiting distribution for the number of symbol comparisons after normalization: first centering by the mean and then dividing by n. Additionally, under a condition that grows more restrictive as p increases, we have convergence of moments of orders p and smaller. In particular, we have convergence in distribution and convergence of moments of every order whenever the source is memoryless, that is, whenever each key is generated as an infinite string of i.i.d. symbols. This is somewhat surprising; even for the classical model that each key is an i.i.d. string of unbiased ("fair") bits, the mean exhibits periodic fluctuations of order n.Comment: Published in at http://dx.doi.org/10.1214/12-AAP866 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore