587 research outputs found

    Optimality in Quantum Data Compression using Dynamical Entropy

    Full text link
    In this article we study lossless compression of strings of pure quantum states of indeterminate-length quantum codes which were introduced by Schumacher and Westmoreland. Past work has assumed that the strings of quantum data are prepared to be encoded in an independent and identically distributed way. We introduce the notion of quantum stochastic ensembles, allowing us to consider strings of quantum states prepared in a more general way. For any identically distributed quantum stochastic ensemble we define an associated quantum Markov chain and prove that the optimal average codeword length via lossless coding is equal to the quantum dynamical entropy of the associated quantum Markov chain

    Lower Bounds on the Redundancy of Huffman Codes with Known and Unknown Probabilities

    Full text link
    In this paper we provide a method to obtain tight lower bounds on the minimum redundancy achievable by a Huffman code when the probability distribution underlying an alphabet is only partially known. In particular, we address the case where the occurrence probabilities are unknown for some of the symbols in an alphabet. Bounds can be obtained for alphabets of a given size, for alphabets of up to a given size, and for alphabets of arbitrary size. The method operates on a Computer Algebra System, yielding closed-form numbers for all results. Finally, we show the potential of the proposed method to shed some light on the structure of the minimum redundancy achievable by the Huffman code

    Optimal Prefix Codes for Infinite Alphabets with Nonlinear Costs

    Full text link
    Let P={p(i)}P = \{p(i)\} be a measure of strictly positive probabilities on the set of nonnegative integers. Although the countable number of inputs prevents usage of the Huffman algorithm, there are nontrivial PP for which known methods find a source code that is optimal in the sense of minimizing expected codeword length. For some applications, however, a source code should instead minimize one of a family of nonlinear objective functions, β\beta-exponential means, those of the form logaip(i)an(i)\log_a \sum_i p(i) a^{n(i)}, where n(i)n(i) is the length of the iith codeword and aa is a positive constant. Applications of such minimizations include a novel problem of maximizing the chance of message receipt in single-shot communications (a<1a<1) and a previously known problem of minimizing the chance of buffer overflow in a queueing system (a>1a>1). This paper introduces methods for finding codes optimal for such exponential means. One method applies to geometric distributions, while another applies to distributions with lighter tails. The latter algorithm is applied to Poisson distributions and both are extended to alphabetic codes, as well as to minimizing maximum pointwise redundancy. The aforementioned application of minimizing the chance of buffer overflow is also considered.Comment: 14 pages, 6 figures, accepted to IEEE Trans. Inform. Theor

    Optimal prefix codes for pairs of geometrically-distributed random variables

    Full text link
    Optimal prefix codes are studied for pairs of independent, integer-valued symbols emitted by a source with a geometric probability distribution of parameter qq, 0<q<10{<}q{<}1. By encoding pairs of symbols, it is possible to reduce the redundancy penalty of symbol-by-symbol encoding, while preserving the simplicity of the encoding and decoding procedures typical of Golomb codes and their variants. It is shown that optimal codes for these so-called two-dimensional geometric distributions are \emph{singular}, in the sense that a prefix code that is optimal for one value of the parameter qq cannot be optimal for any other value of qq. This is in sharp contrast to the one-dimensional case, where codes are optimal for positive-length intervals of the parameter qq. Thus, in the two-dimensional case, it is infeasible to give a compact characterization of optimal codes for all values of the parameter qq, as was done in the one-dimensional case. Instead, optimal codes are characterized for a discrete sequence of values of qq that provide good coverage of the unit interval. Specifically, optimal prefix codes are described for q=21/kq=2^{-1/k} (k1k\ge 1), covering the range q1/2q\ge 1/2, and q=2kq=2^{-k} (k>1k>1), covering the range q<1/2q<1/2. The described codes produce the expected reduction in redundancy with respect to the one-dimensional case, while maintaining low complexity coding operations.Comment: To appear in IEEE Transactions on Information Theor

    Multiresolution vector quantization

    Get PDF
    Multiresolution source codes are data compression algorithms yielding embedded source descriptions. The decoder of a multiresolution code can build a source reproduction by decoding the embedded bit stream in part or in whole. All decoding procedures start at the beginning of the binary source description and decode some fraction of that string. Decoding a small portion of the binary string gives a low-resolution reproduction; decoding more yields a higher resolution reproduction; and so on. Multiresolution vector quantizers are block multiresolution source codes. This paper introduces algorithms for designing fixed- and variable-rate multiresolution vector quantizers. Experiments on synthetic data demonstrate performance close to the theoretical performance limit. Experiments on natural images demonstrate performance improvements of up to 8 dB over tree-structured vector quantizers. Some of the lessons learned through multiresolution vector quantizer design lend insight into the design of more sophisticated multiresolution codes
    corecore