23,772 research outputs found

    A user-study on online adaptation of neural machine translation to human post-edits

    Get PDF
    © 2018, Springer Nature B.V. The advantages of neural machine translation (NMT) have been extensively validated for offline translation of several language pairs for different domains of spoken and written language. However, research on interactive learning of NMT by adaptation to human post-edits has so far been confined to simulation experiments. We present the first user study on online adaptation of NMT to user post-edits in the domain of patent translation. Our study involves 29 human subjects (translation students) whose post-editing effort and translation quality were measured on about 4500 interactions of a human post-editor and an NMT system integrating an online adaptive learning algorithm. Our experimental results show a significant reduction in human post-editing effort due to online adaptation in NMT according to several evaluation metrics, including hTER, hBLEU, and KSMR. Furthermore, we found significant improvements in BLEU/TER between NMT outputs and professional translations in granted patents, providing further evidence for the advantages of online adaptive NMT in an interactive setup

    Domain Adaptation Techniques for Machine Translation and Their Evaluation in a Real-World Setting

    Get PDF
    Abstract. Statistical Machine Translation (SMT) is currently used in real-time and commercial settings to quickly produce initial translations for a document which can later be edited by a human. The SMT models specialized for one domain often perform poorly when applied to other domains. The typical assumption that both training and testing data are drawn from the same distribution no longer applies. This paper evaluates domain adaptation techniques for SMT systems in the context of end-user feedback in a real world application. We present our experiments using two adaptive techniques, one relying on log-linear models and the other using mixture models. We describe our experimental results on legal and government data, and present the human evaluation effort for post-editing in addition to traditional automated scoring techniques (BLEU scores). The human effort is based primarily on the amount of time and number of edits required by a professional post-editor to improve the quality of machine-generated translations to meet industry standards. The experimental results in this paper show that the domain adaptation techniques can yield a significant increase in BLEU score (up to four points) and a significant reduction in post-editing time of about one second per word

    Quantifying the effect of machine translation in a high-quality human translation production process

    Get PDF
    This paper studies the impact of machine translation (MT) on the translation workflow at the Directorate-General for Translation (DGT), focusing on two language pairs and two MT paradigms: English-into-French with statistical MT and English-into-Finnish with neural MT. We collected data from 20 professional translators at DGT while they carried out real translation tasks in normal working conditions. The participants enabled/disabled MT for half of the segments in each document. They filled in a survey at the end of the logging period. We measured the productivity gains (or losses) resulting from the use of MT and examined the relationship between technical effort and temporal effort. The results show that while the usage of MT leads to productivity gains on average, this is not the case for all translators. Moreover, the two technical effort indicators used in this study show weak correlations with post-editing time. The translators' perception of their speed gains was more or less in line with the actual results. Reduction of typing effort is the most frequently mentioned reason why participants preferred working with MT, but also the psychological benefits of not having to start from scratch were often mentioned

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    A Neural, Interactive-predictive System for Multimodal Sequence to Sequence Tasks

    Full text link
    We present a demonstration of a neural interactive-predictive system for tackling multimodal sequence to sequence tasks. The system generates text predictions to different sequence to sequence tasks: machine translation, image and video captioning. These predictions are revised by a human agent, who introduces corrections in the form of characters. The system reacts to each correction, providing alternative hypotheses, compelling with the feedback provided by the user. The final objective is to reduce the human effort required during this correction process. This system is implemented following a client-server architecture. For accessing the system, we developed a website, which communicates with the neural model, hosted in a local server. From this website, the different tasks can be tackled following the interactive-predictive framework. We open-source all the code developed for building this system. The demonstration in hosted in http://casmacat.prhlt.upv.es/interactive-seq2seq.Comment: ACL 2019 - System demonstration
    corecore