266 research outputs found

    Why Does a Kronecker Model Result in Misleading Capacity Estimates?

    Full text link
    Many recent works that study the performance of multi-input multi-output (MIMO) systems in practice assume a Kronecker model where the variances of the channel entries, upon decomposition on to the transmit and the receive eigen-bases, admit a separable form. Measurement campaigns, however, show that the Kronecker model results in poor estimates for capacity. Motivated by these observations, a channel model that does not impose a separable structure has been recently proposed and shown to fit the capacity of measured channels better. In this work, we show that this recently proposed modeling framework can be viewed as a natural consequence of channel decomposition on to its canonical coordinates, the transmit and/or the receive eigen-bases. Using tools from random matrix theory, we then establish the theoretical basis behind the Kronecker mismatch at the low- and the high-SNR extremes: 1) Sparsity of the dominant statistical degrees of freedom (DoF) in the true channel at the low-SNR extreme, and 2) Non-regularity of the sparsity structure (disparities in the distribution of the DoF across the rows and the columns) at the high-SNR extreme.Comment: 39 pages, 5 figures, under review with IEEE Trans. Inform. Theor

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe

    Random Beamforming over Correlated Fading Channels

    Full text link
    We study a multiple-input multiple-output (MIMO) multiple access channel (MAC) from several multi-antenna transmitters to a multi-antenna receiver. The fading channels between the transmitters and the receiver are modeled by random matrices, composed of independent column vectors with zero mean and different covariance matrices. Each transmitter is assumed to send multiple data streams with a random precoding matrix extracted from a Haar-distributed matrix. For this general channel model, we derive deterministic approximations of the normalized mutual information, the normalized sum-rate with minimum-mean-square-error (MMSE) detection and the signal-to-interference-plus-noise-ratio (SINR) of the MMSE decoder, which become arbitrarily tight as all system parameters grow infinitely large at the same speed. In addition, we derive the asymptotically optimal power allocation under individual or sum-power constraints. Our results allow us to tackle the problem of optimal stream control in interference channels which would be intractable in any finite setting. Numerical results corroborate our analysis and verify its accuracy for realistic system dimensions. Moreover, the techniques applied in this paper constitute a novel contribution to the field of large random matrix theory and could be used to study even more involved channel models.Comment: 35 pages, 5 figure

    Iterative Deterministic Equivalents for the Performance Analysis of Communication Systems

    Full text link
    In this article, we introduce iterative deterministic equivalents as a novel technique for the performance analysis of communication systems whose channels are modeled by complex combinations of independent random matrices. This technique extends the deterministic equivalent approach for the study of functionals of large random matrices to a broader class of random matrix models which naturally arise as channel models in wireless communications. We present two specific applications: First, we consider a multi-hop amplify-and-forward (AF) MIMO relay channel with noise at each stage and derive deterministic approximations of the mutual information after the Kth hop. Second, we study a MIMO multiple access channel (MAC) where the channel between each transmitter and the receiver is represented by the double-scattering channel model. We provide deterministic approximations of the mutual information, the signal-to-interference-plus-noise ratio (SINR) and sum-rate with minimum-mean-square-error (MMSE) detection and derive the asymptotically optimal precoding matrices. In both scenarios, the approximations can be computed by simple and provably converging fixed-point algorithms and are shown to be almost surely tight in the limit when the number of antennas at each node grows infinitely large. Simulations suggest that the approximations are accurate for realistic system dimensions. The technique of iterative deterministic equivalents can be easily extended to other channel models of interest and is, therefore, also a new contribution to the field of random matrix theory.Comment: submitted to the IEEE Transactions on Information Theory, 43 pages, 4 figure

    Finite Random Matrix Theory Analysis of Multiple Antenna Communication Systems

    Get PDF
    Multiple-antenna systems are capable of providing substantial improvement to wireless communication networks, in terms of data rate and reliability. Without utilizing extra spectrum or power resources, multiple-antenna technology has already been supported in several wireless communication standards, such as LTE, WiFi and WiMax. The surging popularity and enormous prospect of multiple-antenna technology require a better understanding to its fundamental performance over practical environments. Motivated by this, this thesis provides analytical characterizations of several seminal performance measures in advanced multiple-antenna systems. The analytical derivations are mainly based on finite dimension random matrix theory and a collection of novel random matrix theory results are derived. The closed-form probability density function of the output of multiple-input multiple-output (MIMO) block-fading channels is studied. In contrast to the existing results, the proposed expressions are very general, applying for arbitrary number of antennas, arbitrary signal-to-noise ratio and multiple classical fading models. Results are presented assuming two input structures in the system: the independent identical distributed (i.i.d.) Gaussian input and a product form input. When the channel is fed by the i.i.d. Gaussian input, analysis is focused on the channel matrices whose Gramian is unitarily invariant. When the channel is fed by a product form input, analysis is conducted with respect to two capacity-achieving input structures that are dependent upon the relationship between the coherence length and the number of antennas. The mutual information of the systems can be computed numerically from the pdf expression of the output. The computation is relatively easy to handle, avoiding the need of the straight Monte-Carlo computation which is not feasible in large-dimensional networks. The analytical characterization of the output pdf of a single-user MIMO block-fading channels with imperfect channel state information at the receiver is provided. The analysis is carried out under the assumption of a product structure for the input. The model can be thought of as a perturbation of the case where the statistics of the channel are perfectly known. Specifically, the average singular values of the channel are given, while the channel singular vectors are assumed to be isotropically distributed on the unitary groups of dimensions given by the number of transmit and receive antennas. The channel estimate is affected by a Gaussian distributed error, which is modeled as a matrix with i.i.d. Gaussian entries of known covariance. The ergodic capacity of an amplify-and-forward (AF) MIMO relay network over asymmetric channels is investigated. In particular, the source-relay and relay-destination channels undergo Rayleigh and Rician fading, respectively. Considering arbitrary-rank means for the relay-destination channel, the marginal distribution of an unordered eigenvalue of the cascaded AF channel is presented, thus the analytical expression of the ergodic capacity of the system is obtained. The results indicate the impact of the signal-to-noise ratio and of the Line-of-Sight component on such asymmetric relay network
    • …
    corecore