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Summary

Multiple-antenna systems are capable of providing substantial improvement to wire-
less communication networks, in terms of data rate and reliability. Without utilizing
extra spectrum or power resources, multiple-antenna technology has already been
supported in several wireless communication standards, such as LTE, WiFi and
WiMax. The surging popularity and enormous prospect of multiple-antenna tech-
nology require a better understanding to its fundamental performance over practical
environments. Motivated by this, this thesis provides analytical characterizations of
several seminal performance measures in advanced multiple-antenna systems. The
analytical derivations are mainly based on finite dimension random matrix theory
and a collection of novel random matrix theory results are derived.

The closed-form probability density function of the output of multiple-input
multiple-output (MIMO) block-fading channels is studied. In contrast to the existing
results, the proposed expressions are very general, applying for arbitrary number
of antennas, arbitrary signal-to-noise ratio and multiple classical fading models.
Results are presented assuming two input structures in the system: the independent
identical distributed (i.i.d.) Gaussian input and a product form input. When the
channel is fed by the i.i.d. Gaussian input, analysis is focused on the channel matrices
whose Gramian is unitarily invariant. When the channel is fed by a product form
input, analysis is conducted with respect to two capacity-achieving input structures
that are dependent upon the relationship between the coherence length and the
number of antennas. The mutual information of the systems can be computed
numerically from the pdf expression of the output. The computation is relatively
easy to handle, avoiding the need of the straight Monte-Carlo computation which is
not feasible in large-dimensional networks.

The analytical characterization of the output pdf of a single-user MIMO block-
fading channels with imperfect channel state information at the receiver is provided.
The analysis is carried out under the assumption of a product structure for the input.
The model can be thought of as a perturbation of the case where the statistics of
the channel are perfectly known. Specifically, the average singular values of the
channel are given, while the channel singular vectors are assumed to be isotropically
distributed on the unitary groups of dimensions given by the number of transmit
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and receive antennas. The channel estimate is affected by a Gaussian distributed
error, which is modeled as a matrix with i.i.d. Gaussian entries of known covariance.

The ergodic capacity of an amplify-and-forward (AF) MIMO relay network over
asymmetric channels is investigated. In particular, the source-relay and relay-
destination channels undergo Rayleigh and Rician fading, respectively. Considering
arbitrary-rank means for the relay-destination channel, the marginal distribution of
an unordered eigenvalue of the cascaded AF channel is presented, thus the analytical
expression of the ergodic capacity of the system is obtained. The results indicate
the impact of the signal-to-noise ratio and of the Line-of-Sight component on such
asymmetric relay network.
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Chapter 1

Introduction

Multiple-antenna communication technology is, by any measure, the most appealing
topic and fastest evolving aspect in modern wireless communication systems. This
technology is characterized by the employment of multiple antennas at either trans-
mitter or receiver, or at both terminals. Compared with the conventional single-
antenna system, multiple-antenna system is able to bring extra degree of freedom
which can be applied to obtain various advantages including higher system capacity
and more robust system performance.

Higher system capacity can be achieved by exploiting the spatial selectivity,
without consuming extra power or bandwidth. The landmark papers [3] and [4]
unveil such benefits of the multi-antenna system, which render a multiplication of
the capacity. Actually, the original high-rate data sequence is split by the transmitter
into multiple lower-rate data sequences, and then transmitted in parallel through
each of the transmitter antennas, while the receiver undo the mixing of the MIMO
channel in order to detect the signals corresponding to each of the transmitted data
streams. This advantage is widely known as spatial multiplexing and it exists only
in MIMO scenario.

On the other hand, in order to combat the fading and assure the reliability of
the transmission, multiple-antenna system can also be exploited in terms of spa-
tial diversity. By sending the same signals through multiple paths simultaneously,
multiple independently faded replicas of data sequences are received and thus more
reliable reception can be achieved. Differently to the temporal diversity or frequency
diversity, which can be exploited in single-input single-output (SISO) system, the
realization of spatial diversity does not incur a penalty in terms of data rate.

Of key importance for study of multiple-antenna systems is the characterization
of the multipath transmission system. Modeling wireless channel is inherently dif-
ficult because the physical mechanisms of the channel are intricate to depict. It is
also complicated to analyze a system with an involved channel model. Therefore, a
few simplified canonical settings are put forth, which provide a compromise between
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1 – Introduction

the realistic scenario and the tractability of the system model. If time is treated as
the signaling domain, the description of the channel fading dynamics turns out to be
a problem of the fading selectivity over each coded data packet. If the fading varies
fast and ergodically during the packet length, i.e., the channel coherence length is
much shorter than the packet length, the scenario can be regarded as the ergodic
setting; if the fading is constant over the duration of one packet and varies only from
packet to another, i.e., the channel coherence length is much longer than the packet
length, the scenario can be treated as the quasi-static setting.

In ergodic setting, where one packet is subject to the entire distribution of the
fading distribution, ergodic capacity is used to characterize the system performance.
Ergodic capacity can be derived by taking expectation of the system mutual infor-
mation over the stationary distribution of the fading. The error probability, which
indicates the data rate is lower than the ergodic capacity, decays exponentially with
the transmission length [5]. Ergodic capacity can be achieved by transmitting a
codeword over a very large number of independent fading blocks. The most asso-
ciated realistic scenario of the ergodic setting is the vehicular scenarios, where the
mobile terminal moves at a high speed.

In quasi-static setting, each coded packet is subject to single realization of the
fading process. Thus, the model is characterized as a block-fading structure, where
the channel keeps constant during the block length. This situation typically occurs
when stringent delay constraints are imposed, for example, in speech transmission
over wireless networks, or when the channel varies slowly, for example, in indoor
environments. Since this assumption gives rise to the nonexistence of the ergodic
capacity, the relevant performance metric is the outage probability that characterizes
the probability of a given bit rate that is not supported in a given fading channel.
Furthermore, the concept of tradeoff between bit rate and outage probability has
been raised [6] and it spurs a proliferation of research activities.

Currently, multiple-antenna technology is an essential element of multiple wire-
less communication standards such as IEEE 802.11n, IEEE 802.11ac, HSPA+, LTE-
A, WiMAX, and WLAN. MIMO technology has been proven to be a prominent
feature of future wireless communication systems.

1.1 MIMO Signals and Channel Models

The canonical form of MIMO system model is composed of multiple transmitter
antennas and multiple receive antennas, as shown in Fig. 1.1. Let Nt denote the
number of antennas at transmitter andNr denote the number of antennas at receiver.
Mathematically, the complex baseband model is characterized by

y = Hx + n, (1.1)

4



1 – Introduction

Figure 1.1: Diagram of a MIMO system

where

• x is an Nt dimension vector containing the complex signal transmitted by Nt

antennas.

• y is an Nr dimension vector containing the complex signal received by Nr

antennas.

• n is an Nt dimension vector representing the additive noise. Usually and also
in this thesis, the elements of n are modeled as independent complex Gaussian
random variables with zero mean and unit variance.

• H is an Nr × Nt dimension matrix, whose (i,j)th entry represents the multi-
plicative fading parameter for the wireless channel between the jth transmit
and ith receive antenna.

Note that (1.1) applies directly to narrowband systems where the channel is subject
to frequency flat fading. In narrowband system, the signal bandwidth is smaller
than the coherence bandwidth of the channel. For more general wideband system,
which appears more often in modern wireless communication systems, the channel
is subject to frequency selective fading. By employing multi-carrier modulation
scheme such as OFDM, the frequency selective channel can be decomposed into
several parallel frequency flat channels. Therefore, the above model is still valid and
worthy to be exploited even in wideband system.

The characteristic of the MIMO channel is determined by the statistical dis-
tribution of the entries of H. In realistic transmission, the transmitted signal is
affected by both large-scale propagation effects and small-scale propagation effects.
Large-scale propagation effects are characterized by path loss and shadowing, due
to large transmission distances as well as large obstructing objects. Small-scale
propagation effects are caused by the combination of constructive signals and de-
structive stochastic signals over multipath channels. These stochastic signals might

5



1 – Introduction

be scattered, reflected, diffracted, or delayed due to the variations of the channel.
Particularly, small-scale fading is described as a stochastic process that undergoes
Rayleigh distribution, Rician distribution, or other distributions. Throughout this
thesis, we only consider small-scale propagation effects in the MIMO model. In
the following, we first present mathematical description for three types of typical
channel models considering the small-scale propagation, then we give a description
of the block-fading channel.

1.1.1 Rayleigh Fading

In small-scale propagation model, Rayleigh fading is probably the most frequently
used fading models. It is based on the assumption that a large number of propagation
paths exist between the two ends, and the physical condition was referred by the
name of rich scattering. The rich scattering assumption indicates the channel gains
could be modeled as Rayleigh distribution. Mathematically, for any two Gaussian
random variables X and Y , both of which are assumed zero mean and equal variance,
it can be shown that Z =

√
X2 + Y 2 is Rayleigh distributed. Rayleigh fading is

proved to be a good match for multipath fading channels with no Line-of-Sight
(LoS) path [4]. The channel fading amplitude z is distributed as

p(z) =
z

σ2
exp(− z2

2σ2
), z ≥ 0, (1.2)

where 2σ2 is the average received signal power of the signal.

1.1.2 Rician Fading

If the channel has a fixed LoS component then the received signal equals the su-
perposition of a complex Gaussian component and a LoS component. The channel
fading amplitude z is distributed as [7]

p(z) =
z

σ2
exp
[−(z2 + s2)

2σ2

]
I0(

zs

σ2
), z ≥ 0, (1.3)

where 2σ2 is the average received power in the random multipath components, and
s2 is the power in the LoS component. The function I0 is the modified Bessel
function of 0th order. The Rician distribution is often described in terms of a fading
parameter K, defined as [7]

K =
s2

2σ2
. (1.4)

Therefore, K is the ratio of power in the determinant (LoS) component to the power
in the stochastic (non-LoS) components. When K = 0, the Rician distribution turns
out to be the Rayleigh distribution. When K = ∞, the channel is subject to no
fading but only the LoS component [7].

6



1 – Introduction

1.1.3 Correlated Channel

Apart from the above two fading models, the transmission might be influenced by
the spatial fading correlation. Spatial fading correlation may occur at either side
of the channel, or both sides of the channel, mainly due to the insufficiently space
between the antennas on the terminal. The correlated channel can be characterized
through following Kronecker structure [17]

H = R
1
2 HwS

1
2 , (1.5)

where R and S are determinant correlation matrices, representing the correlation
between the receive and transmit antennas, respectively.

1.1.4 Block-Fading Channel

The time-varying nature of the wireless channel is due to the movement of the
transmitter or the receiver. In a fixed wireless environment where low Doppler
spread occurs, the time between signal fades can be assumed to be sufficiently long.
We call this scenario as slow fading where the coherence time is lower than the
symbol period. The channel variation is slower than the baseband signal variation
and the transmitter can send training signals that allow the receiver to estimate
the channel accurately. In the other case, where the terminal is moving rapidly,
for example in a high-speed train, the high Doppler spread occurs. This scenario is
named as fast fading where coherence time is shorter than the symbol period.

In the scenario where at least one terminal is moving, the time between fades
may be too short to permit reliable estimation of the channel. For instance, as
stated in [8], A 60-mi/h mobile operating at 1.9 GHz has a fading interval of about
3 ms, which for a symbol rate of 30 kHz, corresponds to only about 100 symbol
periods. In such 100 symbol periods, we could assume the channel coefficients are
constant. Therefore, the block-fading channel is defined as the constant state of
the wireless channel over a period of time that is called the coherence time (or
coherence bandwidth if the system is analyzed in frequency domain). Particularly,
for a rectangular Doppler spectrum, an exact relationship between the block-fading
and the continuous-fading models is given in [9]

b =
c

2fcTsv
(1.6)

where b, fc and Ts stand for the coherence length, the carrier frequency and the
symbol period, respectively. c and v represent the light speed and the velocity of
the terminal. More elaborated description of the block-fading channel can be seen
in (3.1).

7



1 – Introduction

1.2 Performance Measures

Based on the proposed MIMO models, several network performance measures are put
forth in order to provide an accurate and simple means to evaluate the performance.
These measures can also shed some light on the decision which has to be made when
the engineers are designing or analyzing the networks, since they can easily uncover
the impact of the system parameters on the network performance. In this section,
we give a brief introduction of several essential measures which have been deeply
exploited frequently in the literature.

1.2.1 Channel Capacity

Channel capacity is a measure which shows the maximum amount of information
that can be transmitted and received with a negligible probability of error. The
channel capacity is measured in bits/s/Hz. In MIMO system, due to the utilization
of the space diversity, the data sequence can be split into several parallel independent
sub-sequence. Hence MIMO system is able to provide a substantial improvement in
terms of the channel capacity, compared with SISO system. From an information-
theoretic point of view, what is of critical is the selectivity of the fading over the
coded data block and two different notions of capacity emerged: the ergodic capacity
and the outage capacity. If the fading channel varies greatly and ergodically during
the transmission of the coded packet, ergodic capacity can be evaluated as the
expectation of the mutual information between the input and the output over the
distribution of the channel. For a system introduced in (1.1), the mutual information
can be expressed as [3]

I = log2 det
(
I + HΦH†

)
(1.7)

where Φ is the transmit covariance matrix defined by Φ = E{xx†}. Then the
ergodic capacity can be obtained as [3]

C = EH

{
max

tr{Φ}≤P
I
}

(1.8)

where P is the power constraint in the transmitter. If we consider that the trans-
mitter has perfect CSI, the transmitter can allocate its power according to the well
known waterfilling principle [10], which could maximize the mutual information. On
the other hand, if the transmitter has no CSI, it is optimal to use a uniform power
distribution [3]. We only consider the latter case. In this scenario, the transmit co-
variance matrix is then expressed as Φ = P

Nt
INt , and the ergodic capacity is written

as

C = EH

{
max

(
log2 det

(
I +

ρ

Nt

HH†
))}

(1.9)

8



1 – Introduction

where ρ is the average SNR per receive antenna. Using eigenvalue decomposition,
we can write HH† as

HH† = EΛE† (1.10)

where Λ is a diagonal matrix with the eigenvalues on the main diagonal, and E
is the corresponding eigenvector matrix with orthogonal columns. Therefore, the
ergodic capacity of MIMO system can be written as the sum of parallel AWGN
SISO subchannels. The number of the subchannels is determined by the rank of H,
which is

rank(H) = r ≤ min{Nt,Nr}. (1.11)

Replacing (1.10) into (1.9), the ergodic capacity can be expressed as

C = EH

{ r∑
i=1

log2

(
1 +

ρ

Nt

λi
)}

(1.12)

However, the ergodic assumption does not always hold in realistic scenarios. For
example, in indoor environment, there are no significant changes with respect to
the fading channel over the span of each coded packet. In such case, it is possible
that the transmission rate exceeds the instantaneous channel capacity. In order to
depict the outage performance, q% outage capacity Cout indicates that, the mutual
information I is guaranteed to be supported by (100−p)% of the channel realization,
i.e.,

p(I ≤ Cout) = q% (1.13)

1.2.2 Signal-to-Noise Ratio and Signal-to-Interference-Plus-
Noise Ratio

The SNR is usually measured at the receiver of the communication systems, where
the co-channel interference is neglected. The output SNR depends explicitly on the
channel and is defined as the ratio of the signal power to the noise power. In the
multiuser scenario, if the co-channel interference is taken into account, the output
SINR equals to the ratio of the signal power to the sum of the interference power
and the noise power in the output. Apparently, the higher output SNR or SINR,
the better the network performance. It should be noted that in the analysis of non-
ergodic channel, the distribution of output SNR or SINR are essential measures to
evaluate the system, since they can be used to express the outage probability or the
average symbol error rate.

1.2.3 Outage Probability

Outage probability is another measure defined for the non-ergodic channel. It in-
dicates the probability that the instantaneous channel capacity is below a specified

9



1 – Introduction

value, or the probability that the output SNR or SINR is lower than a threshold.
Mathematically, outage probability can be obtained directly from the CDF of the
SNR or SINR, as [7]

pout = Fγ(γth) =

∫ γth

0

pγ(γ)dγ. (1.14)

where pγ(γ) is the PDF of the SNR or SINR.

1.3 Related Work

Broadly speaking, compared with traditional SISO system, the most important ben-
efits brought by MIMO systems can be categorized into two aspects: improved sys-
tem capacity and enhanced link reliability. A large amount of work is based on the
canonical system model introduced in (1.1). In this section, a concise description of
such contributions is given. In addition to the classical model, more complicated and
realistic network models are also proposed, which take into account the cooperative
transmission or the block fading structure of the channel. A brief introduction is
also provided regarding these models.

1.3.1 Capacity Based Research

The information-theoretic capacity based research on MIMO systems can be traced
back to two landmark contributions in [3] and [4]. Both works uncover the fact
that implementing multiple antennas on both sides of the channel can result in a
multiplication of the capacity. This advantage is named as multiplexing gain. When
the transmitter has no CSI, an effective transmission scheme has been presented
in [11], called Vertical Bell-Labs Layered Space Time (VBLAST). The basic principle
of such gain is to split a high-rate input sequence into multiple lower-rate sequences,
which are sent through parallel channels by multiple transmit antennas, while the
receiver undo and detect the mixing of the signal. For some systems that provide
feedback link or a reciprocal channel for CSI, the transmitter is able to use the
channel information to further improve the capacity. The optimal scheme for such
application has been given in [12], named multichannel beamforming.

The majority of works on MIMO capacity select ergodic capacity as the measure
of channel performance. The analysis is impacted heavily by the level CSI available
on terminals. When the CSI is known perfectly both to the transmitter and to the
receiver, the well known water-filling scheme is adopted to allocate the power among
the transmitter antennas [3]. When the CSI is not available at transmitter and is
perfectly known to the receiver due to the training process, even power distribution
is the solution for the power allocation on the transmitter antenna. Although it is
proved to be not strictly optimal [13], the justification for the even distribution as a
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1 – Introduction

robust transmission scheme can be established based on the maxmin property [14].
Furthermore, power allocation is analyzed when the CSI is not perfectly know to
the receiver and transmitter [15].

For certain specific MIMO channel models, such as uncorrelated Rayleigh fading
scenario, the closed-form expression of ergodic capacity has been given in [16]. How-
ever, acquisition of the closed-form for capacity on more general fading models are
much more involved. It is still an open problem to obtain the concise closed-form
results for capacity on Rician or correlated models. The capacity of one-sided cor-
related Rayleigh fading channels has been studied in [17] and [18]. The capacity of
Rician fading channels has been exploited in [19]. However, the obtained expressions
of capacity in these works involve the summation of infinity number of entries, which
are resulted from the expansion of the hypergeometric function. The main reason is
that the eigenvalue distribution of HH† in (1.10) is more complicated for nonzero
mean channel matrix or correlated channel matrix. In order to make progress in
these cases as to provide engineering insights, some researches resort to bounding
techniques or asymptotic results. In [20], tight upper and lower bounds for Rank-1
Rician channel has been derived. Regarding the correlated Rayleigh fading channel,
both [21] and [16] have presented the upper bound and lower bound of the capac-
ity, focusing on one-sided correlation and double-sided correlation, separately. The
impact of correlation and LoS path have been considered simultaneously in [22],
which provides the bound taking account of double-sided correlation and arbitrary
rank channel means. Besides the bounding techniques, there is another approach
to derive the asymptotic expression of ergodic capacity, assuming the number of
transmit and receive antennas grows asymptotically while their ratio and SNR are
constant. For example, [23] has adopted this approach and the asymptotic results
are shown to be accurate even with a not-so-large dimension of the networks.

1.3.2 Diversity Based Research

Besides the capacity gain, another advantage brought by multiple-antenna systems
is the spatial diversity gain. Diversity is an efficient approach to combat fading,
and the general principle of diversity is transmitting multiple pieces of the same
information through independent channels, so as to increase the robustness of the
transmission, i.e. diversity gain. Mathematically, diversity gain is defined as the
slope showing how fast the BER decays with the increase of the SNR. Diversity
gain could be obtained by utilizing the temporal diversity or frequency diversity,
by repeating the transmission in various time interval or the frequency interval.
However, they will definitely impair the data rate or escalate the bandwidth usage.
In contrast, spatial diversity will nor incur any penalty in data rate or bandwidth.

When CSI is not available at the transmitter, the same signal could be sent
from single-antenna equipped transmitter through multiple independent channels.

11
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The receiver can intelligently combine the multiple replicas of the same signal and
a maximum diversity gain, which equals the number of receive antennas. When
the transmitter is equipped with multiple antennas, a MIMO transmission scheme
called space-time codes (STC) is proposed. Two classical STC techniques have been
invented, which are space-time trellis codes [24] and space-time block codes [25, 26].
Both STC schemes are able to achieve the full diversity gain of MIMO system.

When CSI is available at the transmitter, a beamforming strategy called Max-
imum Ratio Transmission (MRT) is provided, which could fulfill the full diversity
gain as well as the improved SNR performance [27]. The basic principle of MRT is
transmit the signal along the eigenmode of the channel corresponding to the largest
eigenvalue of the channel. After that, the receiver utilizes the Maximum Ratio
Combining (MRC) scheme to combine the signal [28].

1.4 Dissertation Contributions and Outline

The rest of the thesis is organized as follows. Chapter 2 introduces mathematical
background of the thesis, concentrating on the fundamental definition and theories
of RMT. The following chapters present the major contributions of the thesis. In
Chapter 3 and Chapter 4, we focus on the analysis of the output statistics of MIMO
block-fading channels, while in Chapter 5, the ergodic capacity of amplify-and-
forward relay MIMO network over asymmetric fading channels is analyzed.

Specifically, Chapter 3 considers the closed-form expression of the output pdf in
MIMO block-fading channels. As the first work that focuses on the research of the
output statistics of MIMO block-fading channels, two input structures and different
channel fading models are considered in the network model. The analysis is based
on a set of new statistics properties of the output corresponding to various system
models using finite RMT. These novel output density expressions pave the way to
compute the mutual information of the system, as well as other system performance
measures such as the information density.

Chapter 4 exploits the output statistics of MIMO block-fading channels with
imperfect CSI obtained at the receiver. The results are derived with the assump-
tion that the estimated channel is impaired by the Gaussian noise. We derive the
pdf of the received signal in several scenarios of practical interests, including the
MMSE estimation. Furthermore, some open issues regarding the channel output
characterization are presented.

Chapter 5 investigates the ergodic capacity performance of AF MIMO relay
networks over asymmetric Rayleigh-Rician channels. In the two cases where the
Rician channel has full-rank and low-rank means, the closed-form expression for the
marginal pdf of an unordered eigenvalue of the cascaded AF channel is derived. Us-
ing these analytical expressions, the ergodic capacity of the system can be obtained.

12
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Chapter 6 gives some concluding remarks and provides directions for future re-
search.
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Chapter 2

Mathematical Preliminaries

In this chapter, new results on the finite random matrix theory are presented. The
new results pave the way for studying the output statistics of MIMO block-fading
channels and the ergodic capacity of two-hop relay network over asymmetric channels
in the subsequent chapters. In order to clarify the derivations in this thesis, a brief
overview of finite RMT is first presented, which introduces the relevant concepts of
determinant and generalized hypergeometric functions, as well as the matrix-variate
distributions, joint eigenvalue and marginal eigenvalue distributions.

2.1 Basic Notations

We first enumerate the notations adopted in this thesis in Table.( 2.1). Unless
otherwise declared, throughout the thesis, uppercase and lowercase boldface letters
denote matrices and vectors, respectively.

2.2 Definitions and Preliminary Results

This section provides the definitions, concepts and preliminary results, which are
going to be used in subsequent sections and relevant derivations.

2.2.1 Determinant and Vandermonde Determinant

• Determinant: Let A be an m×m matrix with (i,j)th entry ai,j, the determi-
nant can be written as

|A| =
∑
{α}

(−1)per(α)
m∏
k=1

ak,pk (2.1)
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2 – Mathematical Preliminaries

Table 2.1: Notations

∼ Follows certain distribution.

∈ Belongs to.∑
Summation symbol.∏
Product symbol.

∞ Infinite symbol.

! Factorial symbol.

→ Approach symbol.

log, ln Logarithm and natural logarithm.

e Euler’s constant.

max, min Maximum and minimum.

lim Limit.

Cm Complex m× 1 vector.

Cm×n Complex m× n matrix.

tr(X) Trace of the matrix X.

etr(X) Shorthand for etr(X).

|X|,det(X) Determinant of matrix X.

V(X) Vandermonde determinant of X

{ai,j} The matrix whose elements are ai,j

I Identity matrix.

(·)T ,(·)H Transpose and conjugate transpose.

diag(a1, . . . ,aN ) Square diagonal matrix with a1, . . . ,aN on the diagonal.

‖ · ‖ Euclidian norm, i.e.‖X‖2 = Tr(XHX).

Γ (·) Standard gamma function.

p(·) Probability.

Kv(·) Modified Bessel function of the second kind.
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2 – Mathematical Preliminaries

where p = {p1, · · · ,pm} is a permutation of {1, · · · ,m} with sign (−1)per(p),
and the sum is taken over all such permutations.

• Determinant property: Let A and B be n×m and m×n matrices, respectively.
Then

|In + AB| = |In + BA| (2.2)

• Determinant property: Let both A and B be n× n matrices, then

|AB| = |A||B| = |BA| (2.3)

• Complex multivariate Gamma function: Γm(a) is the complex multivariate
Gamma function defined as [29]:

Γm(a) = πm

m∏
`=1

Γ(a− `+ 1) (2.4)

where m being a non-negative integer and

πm = πm(m−1)/2 (2.5)

• Vandermonde determinant: Let A be an m×m Hermitian matrix with eigen-
values a1, . . . ,am. Then the Vandermonde determinant of A is defined as [30,
eq. (2.10)]:

V(A) =
∏

1≤i<j≤m

(ai − aj) , (2.6)

where we assume the eigenvalues to be ordered in decreasing order so that
V(A) is non negative. Moreover, for any constant c, we have V(cA) =
cm(m−1)/2V(A).

• Vandermonde determinant property: Let F = {fi(aj)}, i,j = 1, . . . ,m, be an
m × m matrix, where fi(·)’s are any differentiable functions. Clearly, if the
eigenvalues of A are not distinct, V(A) = 0 and |F| = 0. In such a case, the
ratio |F|/V(A), which appears in the density of many matrices that we study
in the following, can be evaluated by applying l’Hôpital’s rule. More precisely,
let n be an integer such that 0 < n < m, then [31, Lemma 5]

lim
an+1,...,am→a

|F|
V(A)

=
πmΓn(m)

πnΓm(m)

|F̃|
V(Ã)

|Ã− aI|n−m (2.7)

where Ã is of size n× n and has eigenvalues a1, . . . ,an and

(F̃)ij =

{
fi(aj) i = 1, . . . ,m; j = 1, . . . ,n

f
(m−j)
i (a) i = 1, . . . ,m; j = n+ 1, . . . ,m

(2.8)
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with f
(k)
i (·) denoting the k-th derivative of fi(·). For n = 0, we have

lim
a1,...,am→a

|F|
V(A)

=
πm

Γm(m)
|F̃| (2.9)

where (F̃)ij = f
(m−j)
i (a), i,j = 1, . . . ,m.

2.2.2 Generalized Hypergeometric Function

The generalized hypergeometric function is defined as pFq(a; b;X ), where a =
[a1, . . . ,ap]

T, b = [b1, . . . ,bq]
T, and X is a set of arguments that can be either scalars

or square matrices [32]. For the arguments with matrix, the definition of zonal poly-
nomial of a matrix argument is first provided, since it plays an important role in
the original definition of hypergeometric function with matrix arguments.

• Hypergeometric function with scalar argument: In the case of a single scalar
argument, X = {x}, the generalized hypergeometric function is defined as
in [30, eq. (2.24)]:

pFq(a; b;x) =
∞∑
k=0

[a]k
[b]k

xk

k!
(2.10)

where [a]k =
∏p

i=1[ai]k, [b]k =
∏q

j=1[bj]k, and [z]k = Γ(z+k)/Γ(z) denotes the
Pochhammer symbol. Note that 0F0(; ;x) = ex, and 1F0(a; ;x) = (1 − x)−a.
The function 0F1(; b;x) is closely related to the Bessel’s function, and in the
literature functions 1F1(a; b;x) and 2F1(a1,a2; b;x) are also called confluent
hypergeometric function of the first kind and Gauss’s hypergeometric function,
respectively.

• Zonal polynomials: Zonal polynomials are an essential component in the ex-
pression of hypergeometric function with matrix argument. Here we introduce
the complex zonal polynomials of Hermitian matrix arguments. Assuming X
is a n× n Hermitian matrix, the complex zonal polynomial C̃K(X) is defined
as [29]

C̃K(X) = χ[K](1)χ{K}(X) (2.11)

where χ{K}(X) is the character of the representation {K} of the linear group,
given as a symmetric function of the eigenvalues x1, . . . ,xn of X by

χ{K}(X) =

∣∣{xkj+n−ji }i,j=1,...,n

∣∣∣∣{xn−ji }i,j=1,...,n

∣∣ (2.12)

and χ[K](1) is the dimension of the representation [K] of the symmetric group
given by

χ[K](1) = k!

∏n
i<j(ki − kj − i+ j)

Γn(n,K)
(2.13)
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where

Γn(n,K) =
n∏
i=1

Γ(n+ ki − i+ 1) (2.14)

• Hypergeometric function with one matrix argument: As defined in [33], assum-
ing X is a Hermitian n × n matrix, the hypergeometric function of a matrix
argument pFq(a; b; X) is defined as

pFq(a; b; X) =
∞∑
k=0

∑
K

[a]k
[b]k

C̃K(X)

k!
(2.15)

where K = (k1, . . . ,kn) is a partition of k, and (·)K is the complex multivariate
hypergeometric coefficient

(a)K =
n∏
l=1

(a− l + 1)kl (2.16)

• Hypergeometric function with two matrix arguments: As defined in [29], the
hypergeometric function of two matrix arguments is defined as follows

pFq(a; b; X,Y) =
∞∑
k=0

∑
K

[a]k
[b]k

C̃K(X)C̃K(Y)

C̃K(I)k!
(2.17)

The main problem of (2.15) and (2.17) is the extreme difficulty to numerical
compute the hypergeometric function. This issue is resulted from the infi-
nite summation of partitions. Therefore, the expansion with zonal polynomial
could not provide a clear guidance to the system design. Another expansion
approach, called determinant representation, is given with particularly com-
pact and handy form compared with the zonal polynomial expansion. The
generalized hypergeometric function of two matrix arguments, X = {Φ,Ψ},
both of size m×m, can be written through hypergeometric functions of scalar
arguments as [30, eq. (2.34)]

pFq(a; b; Φ,Ψ) = c
|{pFq(ã; b̃;φhψk)}|
V(Φ)V(Ψ)

(2.18)

h,k = 1, . . . ,m, where the constant c is given by [30]

c =
Γm(m)

πq−p+1
m

[
q∏
j=1

Γm(bj)

(bj −m)!m

][
p∏
i=1

(ai −m)!m

Γm(ai)

]
(2.19)

ãi = ai−m+ 1, i = 1, . . . ,p, b̃j = bj −m+ 1, j = 1, . . . ,q, and the eigenvalues
of Φ and Ψ are denoted by φ1, . . . ,φm and ψ1, . . . ,ψm, respectively.
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• Derivative of hypergeometric function: The `-th derivative of the generalized
hypergeometric function pFq(a; b; sx) is given by [32]:

d`

dx`
pFq(a; b; sx) = s`

(a)`
(b)`

pFq(ã; b̃; sx) (2.20)

where ãi = ai + `, b̃j = bj + `, i = 1, . . . ,p, j = 1, . . . ,q, and s is a parameter.

2.3 Matrix-Variate Distributions

In this section, we present multiple distribution expressions that we are going to
utilize in this thesis; namely, matrix-variate complex Gaussian distribution, complex
Wishart distribution and eigenvalue distribution. Before giving such expressions,
we first present the definitions of Stiefel matrix, Haar matrix and the property of
unitarily invariant. Note that the matrix that we deal with in this thesis are all
referred to complex matrix. So from now on we will neglect the specification of
complex entries of the matrix.

• Stiefel matrix: An m × n (m ≥ n) random Stiefel matrix S ∈ S(m,n) is
such that SHS = I and is uniformly distributed on S(m,n). Then, it has pdf
p(S) = |S(m,n)|−1.

• Haar matrix: A square m × m random Haar matrix (Unitary matrix) U ∈
U(m) is such that UUH = UHU = I. When it is uniformly distributed on
U(m), it has pdf p(U) = |U(m)|−1.

• Unitarily invariant: An m × m Hermitian random matrix A is unitarily in-
variant if the joint distribution of its entries equals that of VAVH where V is
any unitary matrix independent of A [34, Definition 2.6 and Lemma 2.6]. If
A is unitarily invariant, then its eigenvalue decomposition can be written as
A = UΛUH where U is a Haar matrix independent of the diagonal matrix Λ.
Since U is Haar (isotropic), it is uniformly distributed on U(m).

• Beta-distribution: The n×n random matrix B is Beta-distributed with positive
integer parameters p and q (B ∼ Bn(p,q)) if

– given T an upper triangular matrix with positive diagonal elements, we
can write B = (TH)−1CT where C ∼ Wn(p,Θ), and

– given A ∼ Wn(m,Θ), we can write A + C = THT. Notice that, if either
p < n or q < n, or both p < n and q < n, the distribution is referred to as
pseudo-Beta since it involves pseudo-Wishart matrices [2, and references
therein].
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2.3.1 Matrix-Variate Complex Gaussian Distribution

Let X ∼ CNn,m(M,Ω⊗Σ) denote the matrix-variate complex Gaussian distribution
of X. We have the pdf of X as [29]

p(X) =
etr
(
−Ω−1(X−M)Σ−1(X−M)H

)
πnm|Ω|m|Σ|n

(2.21)

where M is the mean matrix, Ω and Σ are covariance matrices where Ω ∈ Cn×n > 0
and Σ ∈ Cm×m > 0.

2.3.2 Complex Wishart Distribution

• Wishart matrix: If the columns of them×nmatrix H are independent complex
Gaussian vectors with covariance Θ, assuming m ≤ n, the m × m random
matrix W = HHH is called Wishart matrix.

• Central Wishart matrix distribution: If matrix H is zero mean, the Wishart
matrix W is named central Wishart matrix as W ∼ Wm(n,Θ). For m ≤ n,
the PDF of W is given as [34]

p(W) =
π−m(m−1)/2

|Θ|n
∏m

i=1(n− i)!
exp[−tr{Σ−1W}]|W|n−m (2.22)

• Non-central Wishart matrix distribution: If matrix H is with mean M = E[H],
matrix W = HHH is non-central Wishart [29]. For m ≤ n, the distribution of
W is given by [29]

p(W) =
|W|n−m

Γm(n)
0F1( ;n; MMHW)

eTr{W+MMH} . (2.23)

When m ≥ n, the same expression as in (2.22) and (2.23) hold but replacing M,
m and n with, respectively, MH, n and m.

2.3.3 Eigenvalue Distribution

Many results presented in this thesis are dependent on the eigenvalue distribution of
random matrices. Among them, the eigenvalue distributions of Wishart matrix are
fundamental to the derivation of system performance of MIMO systems. We will
present the joint eigenvalue distribution of central Wishart matrix and non-central
Wishart matrix.
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• For m ≤ n, let W = UΛUH be the singular value decomposition (SVD) of
W = HHH, where H is with zero mean. If Θ = I, then W is unitarily
invariant [34]. In such a case, the joint distribution of the ordered eigenvalues
Λ can be written as [35, 29]

p(Λ) =
π2
m|Λ|n−me−Tr{Λ}

Γm(n)Γm(m)
V2(Λ) . (2.24)

• For m > n, if the rows of H are independent and their covariance matrix is I,
the distribution of the ordered eigenvalues of HHH is given by [35]

p(Λ) =
π2

n|Λ|m−ne−Tr{Λ}

Γn(m)Γn(n)
V2(Λ) . (2.25)

• For m ≤ n, let W = UΛUH be the singular value decomposition (SVD)
of W = HHH, where H is with zero mean. If Θ has distinctive nonzero
eigenvalues, then the joint distribution of the ordered eigenvalues Λ can be
written as [29]

p(Λ) =
π2
m|Λ|n−me−Tr{Λ}

Γm(m)
V2(Λ)|Θ|−n0F0(−Θ−1,Λ) . (2.26)

• For m ≤ n, let H be an m× n random matrix whose entries are independent,
Gaussian random variables with unit variance and average M = E[H]. If
MMH has full rank and distinct eigenvalues, µ1, . . . ,µm, then the joint pdf of
the ordered, strictly positive eigenvalues (λ1, . . . ,λm) = diag(Λ) of W is given
by [29, eq. (102)]

p(Λ) =
|Λ|n−mV(Λ)|{0F1( ;n−m+ 1;µiλj)}|

(n−m)!meTr{Λ+MMH}V(MMH)
. (2.27)

Note that (2.27) has been obtained from [29, eq. (102)] by exploiting the result
in (2.18).

As can be observed from (2.23), if MMH is a scalar matrix (i.e., MMH = µI),
p(W) only depends on the eigenvalues of W. Thus W is unitarily invariant.
In such a case, the distribution of Λ can be obtained from (2.27) by applying
the limit in (2.7) and the property in (2.20), and it is given by

p(Λ) =
π2
m|Λ|n|F|V(Λ)

Γm(m)Γm(n)eµm+Tr{Λ} (2.28)

where (F)ij = λ−ij 0F1( ;n− i+ 1;µλj).
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If MMH is with lower L-rank, and the non-zero eigenvalues are µ1 > µ2 >
· · · > µL , then the distribution of Λ is given by [30]

p(Λ) = K(M)V(Λ)etr(−Λ)|Λ|n−m|T| (2.29)

where

K(M) =
etr(−MMH)

Γm−L(m− L)Γm−L(n− L)V(MMH)
∏L

i=1 µ
m−L
i

(2.30)

and T is a m×m matrix with (i,j)th entry as

(T)ij =

{
0F1(n−m+ 1;µjλi)/(n−m)! i = 1, . . . ,m; j = 1, . . . ,L

λm−ji i = 1, . . . ,m; j = L+ 1, . . . ,m
(2.31)

Note that, since the Vandermonde determinant in (2.6) and pdf are positive
by definition, here and in the following |F| represents the absolute value of
the determinant of matrix F. This avoids us to include in the provided results
coefficients that account for the sign of determinants.

• When n ≤ p, Beta-distributed B admits an eigendecomposition where the
matrix of the eigenvectors is independent of the matrix of the eigenvalues [2,
Lemma 8].

– For q ≤ n, the distribution of the q ordered non-zero eigenvalues of B is
given by [2, eq. (13)]:

p(Λ) =
π2
qΓq(p+ q)|I−Λ|n−q|Λ|p−nV2(Λ)

Γq(n)Γq(p+ q − n)Γq(q)
. (2.32)

– For q > n, B has n nonzero eigenvalues, whose ordered joint distribution
is given by [2, eq. (12)]:

p(Λ) =
π2
nΓn(p+ q)|I−Λ|q−n|Λ|p−nV2(Λ)

Γn(n)Γn(p)Γn(q)
. (2.33)

Due to the lack of the corresponding expression in the literature, herein we
derive the expression of the marginal distribution of a single unordered eigen-
value of a Bn(p,q)-distributed matrix, which will be needed in our subsequent
derivations.
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2.4 New Random Eigenvalue Results

In this section, we present the novel expressions for the eigenvalues distribution
of various matrix-variate structures. Specifically, we derived the joint eigenvalues
distribution of central and noncentral F -matrix and the marginal eigenvalue distri-
bution of Beta-distributed matrix. These new expressions will be utilized in this
thesis to compute the performance measures of the multiple-antenna network.

Theorem 1. Let H1 and H2 be, respectively, an m × n and an m × p (m ≤ p)
Gaussian complex random matrix whose columns are independent, have zero mean,
and covariance Θ1 and Θ2, respectively.

• For m ≤ n, the m×m random matrix W = (H2H2
H)−1/2H1H1

H(H2H2
H)−1/2

is a central F-matrix [29]. When Θ1 and Θ2 are both scalar matrices, W is
unitarily invariant and has a Beta type II distribution [36]. Specifically, when
Θ1Θ

−1
2 = ωI, the distribution of its ordered eigenvalues is given by

p(Λ) =
π2
mΓm(p+ n)

ωmnΓm(m)Γm(p)Γm(n)

V2(Λ)|Λ|n−m

|I + Λ/ω|p+n
. (2.34)

• For m > n, the matrix W = H1
H(H2H2

H)−1H1 is unitarily invariant and the
distribution of its ordered eigenvalues can be expressed as

p(Λ) =
π2
nΓm(p+ n)|F||Ω|−nV(Λ)|I + Λ|m−p−n−1

(p+ n−m)!−nΓn(p+ n)Γm(p)Γn(n)V(I−Ω−1)
(2.35)

where Ω = Θ
1/2
1 Θ−12 Θ

1/2
1 , (F)ij = 1F0(p + n −m + 1; ; (1 − ω−1i )λj/(1 + λj))

for i = 1, . . . ,m, j = 1, . . . ,n, and (F)ij = (1 − ω−1i )m−j for i = 1, . . . ,m,
j = n+ 1, . . . ,m.

Proof. The proof is given in Appendix A.1.

Theorem 2. Let H1 and H2 be, respectively, an m × n and an m × p Gaussian
complex random matrix whose columns are independent and have covariance Θ. Let
also E[H1] = M and E[H2] = 0.

• For m ≤ n, MMH = µI and Θ = θI, the non-central F-matrix W =
(H2H2

H)−1/2H1H1
H(H2H2

H)−1/2 is unitarily invariant and the distribution of
its eigenvalues is given by

p(Λ) =
π2
mV(Λ)2Γm(p+ n)1F1(p+ n;n; µ

θ
Λ(I + Λ)−1)

Γm(m)Γm(n)Γm(p)eµm/θ|Λ|m−n|I + Λ|p+n
(2.36)
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• For m > n, and MHΘ−1M = ωI, the matrix W = H1
H(H2H2

H)−1H1 is
unitarily invariant and the distribution of its eigenvalues is given by

p(Λ) =
π2
nΓn(p+ n)e−ωn

Γn(n)Γn(m)Γn(p+ n−m)

|F||Λ|m−nV(Λ)

|I + Λ|p+1
(2.37)

where (F)ij = (λj/(1 + λj))
n−i

1F1(p+ n− i+ 1;m− i+ 1;ωλj/(1 + λj)).

Proof. The proof is provided in Appendix A.2.

Theorem 3. Given an n× n matrix B ∼ Bn(p,q),

• For q ≤ n, the pdf of a single unordered eigenvalue of B is given by

p(λ) =
π2
q

qΓq(q)

Γq(p+ q)Γ(n− q + 1)

Γq(n)Γq(p+ q − n)

·
n∑

i,j=1

λp−n+i+j−2(1− λ)n−qDij (2.38)

with Dij being the (i,j)-cofactor of the (n× n) matrix A such that

(A)`k =
Γ(p− n+ `+ k − 1)

Γ(p+ k − q + `)
. (2.39)

• For q > n, the pdf of a single unordered eigenvalue of B is given by

p(λ) =
π2
n

Γn(n)

Γn(p+ q)Γ(q − n+ 1)

Γn(p)Γn(q)

·
n∑

i,j=1

λ(p−n+i+j−2)(1− λ)q−nDij (2.40)

with Dij being the (i,j)-cofactor of the (n× n) matrix A such that

(A)`k =
Γ(p− n+ `+ k − 1)

Γ(p+ k + q − 2n+ `)
. (2.41)

Proof. The proof is provided in Appendix A.3.
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Chapter 3

Closed-form Output Statistics of
MIMO Block-Fading Channels

The information that can be transmitted through a wireless channel, with multiple-
antenna equipped transmitter and receiver, is crucially influenced by the channel
behavior as well as by the structure of the input signal. In this chapter, we char-
acterize in closed form the probability density function of the output of MIMO
block-fading channels, for an arbitrary SNR value. Our results provide compact
expressions for such output statistics, paving the way to a more detailed analyti-
cal information-theoretic exploration of communications in presence of block fading.
The analysis is carried out assuming two different structures for the input signal: the
i.i.d. Gaussian distribution and a product form that has been proved to be optimal
for non-coherent communication, i.e., in absence of any channel state information.
When the channel is fed by an i.i.d. Gaussian input, we assume the Gramian of
the channel matrix to be unitarily invariant and derive the output statistics in both
the noise-limited and the interference-limited scenario, considering different fading
distributions. When the product-form input is adopted, we provide the expres-
sions of the output pdf as the relationship between the overall number of antennas
and the fading coherence length varies. We also highlight the relation between our
newly derived expressions and the results already available in the literature, and, for
some cases, we numerically compute the mutual information, based on the proposed
expression of the output statistics.

3.1 Introduction

The availability of an explicit statistical characterization of the output of a wire-
less channel, impaired by additive and multiplicative random disturbance, is of
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3 – Closed-form Output Statistics of MIMO Block-Fading Channels

paramount importance to communication- and information-theoretic purposes. In-
deed, a closed-form expression for the output probability density function (pdf) is
relevant for the evaluation of the ergodic mutual information between the input and
the output signals of a randomly faded channel [19]. It also turns out to be crucial
in the finite block-length regime, in order to characterize the information density of
the communication at hand [37].

In spite of its importance, few explicit results are available in the literature for
the output signal pdf in the case of MIMO block-independent fading channels. The
works in [35, 38, 2] all focus on the case of block-Rayleigh fading. In these papers, the
output statistics are derived under different assumptions on the relative values of the
number of involved antennas and of the coherence length of the fading. The input
distribution, too, plays a crucial role in the cited derivations. More specifically, in
[35] the authors assume the input to be i.i.d. Gaussian and investigate the behavior
of the output distribution as the fading coherence length varies from being quite
short to very long, compared to the overall number of transmit and receive antennas.
In both [38] and [2], instead, the input is assumed to be given by the product of
a diagonal matrix (representing the power allocation over the transmit antennas)
times an isotropically distributed matrix with unitary columns. The main difference
between the two papers is in the assumption on the fading duration. Indeed, the
first one focuses on the case where the coherence length of the Rayleigh fading is
greater than the number of involved antennas; in this case, the high SNR-optimal
power allocation matrix turns out to be a scaled version of the identity matrix [39].
The study in [2], instead, solves the problem of characterizing, again in the high-
SNR regime, the optimal power allocation profile, assuming the fading coherence
length to be shorter, compared to the number of involved antennas. In the latter
case, indeed, the diagonal matrix of the power allocation is characterized by the
eigenvalues of a matrix-variate Beta joint distribution of the entries [2].

In this chapter, we consider both the input models described above, and derive
closed form expressions of the output pdf in presence of a multiple-antenna chan-
nel affected by additive noise and block-fading. In particular, in the case of i.i.d.
Gaussian input, our procedure allows the derivation of a closed-form expression for
the output statistics of channels with unitarily invariant fading law. Apart from
the canonical i.i.d. Rayleigh fading, already treated in [35], this encompasses the
Rician channel with scalar LoS matrix, whose analysis was previously limited to the
evaluation of the fading number [40], and the LoS MIMO [41] with a certain amount
of residual scattering. Also, we provide results for the Land Mobile Satellite (LMS)
with scalar average power LoS matrix [42, Property I] and for the above cases of
MIMO Rayleigh and Rician fading communications impaired by Rayleigh-faded co-
channel interference [43]. We remark that the expressions of the output pdf that we
derive hold for any arbitrary value of SNR.
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3.2 Communication Model

We consider a single-user multiple-antenna communication system, with m and n de-
noting the number of receive and transmit antennas, respectively. Assuming block-
memoryless fading with coherence length equal to b, the output can be described by
the following linear relationship:

Y =
√
γHX + N (3.1)

where Y is the m× b output matrix, and H is the m× n complex random channel
matrix whose entries represent the fading coefficients between each transmit and
receive antenna. N is the m × b matrix of white Gaussian noise which is assumed
to have i.i.d. complex Gaussian entries with zero mean and unitary variance. The
normalized per-transmit antenna SNR is denoted by γ = SNR/n, and X is the
random complex n×b input matrix whose structure will be specified in the following
sections. Moreover, for any positive integer n, we define

γn = γn(n−1)/2 .

Note that the above communication model is adopted in all the following sec-
tions, except for Section 3.3.2 where we resort to a slightly different model explicitly
accounting for interference.

3.3 Output Statistics with IID Gaussian Input

In this section, we analyse the case where the distribution of X is Gaussian i.i.d. and
consider both the noise-limited and interference-limited scenarios. Note that, in the
case under study, the average energy of the input signal is given by E[Tr{XXH}] =
nb.

As for the communication channel, we focus our analysis on some classes of
channel matrices whose Gramian W = HHH is unitarily invariant. As shown in
the following, this allows us to write the expression of the output pdf in terms of
the distribution of the eigenvalues of the channel matrix. In particular, in both the
noise-limited and the interference-limited case, we draw on the following results:

• for m ≤ n, and for unitarily invariant HHH, the distribution of Y is given
by [35, eq. (40) and (41)]

p(Y) =
Γm(m)K(Y)

πmγm

∫
|E||I + γΛ|m−b−1

V(Λ)
p(Λ) dΛ , (3.2)
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where Λ is an m ×m diagonal matrix containing the eigenvalues of channel
matrix HHH, (E)ij = eyicj , and cj = γλj/(1 + γλj), j = 1, . . . ,m. Moreover,
y1, . . . ,ym are the eigenvalues of YYH and

K(Y) =
e−‖Y‖

2

πmbV(YYH)
. (3.3)

• for m > n, and for unitarily invariant HHH, the pdf of Y can be obtained by
following the steps described in [35] and is given by

p(Y) =
Γn(m)K(Y)

πnγn(m−n)

∫
|Ẽ||I + γΛ|m−b−1

V(γΛ)|Λ|m−n
p(Λ) dΛ (3.4)

where Ẽ is an m × m matrix whose elements are given by (Ẽ)ij = eyicj for

1 ≤ j ≤ n, and (Ẽ)ij = yj−n−1i for n + 1 ≤ j ≤ m. Note that in this case the
matrix HHH is of reduced rank since it has m−n zero eigenvalues. Thus, here
p(Λ) indicates the distribution of the n non-zero eigenvalues of HHH and Λ
is an n× n diagonal matrix.

Proof. The proof is given in Appendix A.4.

3.3.1 Noise-Limited

The output pdf of the uncorrelated Rayleigh-faded channel has been evaluated in
[35]. For sake of completeness, we recall this result and present the corrected ex-
pression of the output pdf when m > n. Then, we extend the analysis to two other
practically relevant fading models, namely, the Rician block-fading channel [44, 45]
and Land Mobile Satellite (LMS) channel [42, 46].

Rayleigh Fading Channel

In the case of uncorrelated Rayleigh channel, the entries of H follow an i.i.d. zero-
mean, unit-variance, complex Gaussian distribution.

• For m ≤ n, the distribution of the eigenvalues of HHH is given by (2.24). It
follows that, by using (3.2) and the result in Appendix A.11, the distribution
of Y can be written as [35, Proposition 2].

p(Y) =
πm

γmΓm(n)
K(Y)|Z| (3.5)

where the i,j-th entry of the m×m matrix Z is given by

(Z)ij =

∫ ∞
0

exp

(
yiγx

1 + γx
− x
)

xn−m+j−1

(1 + γx)b+1−m dx .
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• For m > n, the distribution of the eigenvalues of channel matrix HHH is given
by (2.25). By applying (3.4) and the result in Appendix A.11, the output pdf
is given by

p(Y) =
πn

Γn(n)γn(m−n)
K(Y)|Z| . (3.6)

Note that the expression above differs from the one presented in [35, Propo-
sition 2] in the term γn(m−n), which appears at the denominator. The i,j-th
entry of the m×m matrix Z can be written as

(Z)ij =

∫ ∞
0

exp

(
yiγx

1 + γx
− x
)

(x/γ)j−1

(1 + γx)b+1−m dx ,

for 1 ≤ i ≤ m,1 ≤ j ≤ n and (Z)ij = yj−n−1i , for 1 ≤ i ≤ m,n+ 1 ≤ j ≤ m.

Rician Channel

The Rician channel is traditionally modeled as a superposition of a scattered plus a
LoS component, i.e.,

H =

√
κ

κ+ 1
H̄ +

√
1

κ+ 1
H̃ . (3.7)

In (3.7), κ is the Rician factor representing the ratio of the average power of the

unfaded channel component to the faded channel component, the entries of H̃ are
independent, zero-mean unit-variance complex Gaussian, and H̄ is a deterministic
matrix representing the LoS component.

Specifically, for m ≤ n, we consider the special case H̄H̄H = hI (for m > n
we assume H̄HH̄ = hI), where h is a positive parameter. This assumption reflects
two main settings: the scalar LoS channel, introduced in [40] and therein already
analyzed in the high-SNR regime, and the LoS MIMO with residual scattering [41].
Both models assume the LoS matrix to have high (full) rank. The one in [41] is
suitable for MIMO backhaul links where antenna spacing is carefully designed and
transmit-receive distance is fixed. Our model can be thought of as a Gaussian
perturbation, with small variance, of the one in [41]. The model in [40], although
being a sub-case of the one in [41] from the pure mathematical viewpoint, has
played a major role in the early characterization of MIMO Rician channels, due to
the amenability of diagonal [47] (and, in particular, scalar) non-centrality matrices
for the derivation of the capacity-achieving input law.

Under the aforementioned assumption, the Gramian of the matrix H is unitarily
invariant, since (2.27) now is solely dependent on Λ. Therefore, the pdf of the
output can be expressed as in the following proposition.
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Proposition 1. Given a channel as in (3.1) and (3.7), with i.i.d. Gaussian input
and Rician block-fading,

• for m ≤ n, and H̄H̄H = hI, the pdf of its output can be written as

p(Y) =
πm(1 + κ)mn

γmΓm(n)eκhm
K(Y)|Z| , (3.8)

where

(Z)ij =

∫ ∞
0

eyiγx/(1+γx)0F1( ;n− j + 1; x̂) dx

e(1+κ)xxj−n(1 + γx)b−m+1

• for m > n, and H̄HH̄ = hI, the following result holds

p(Y) =
πn(1 + κ)nm

γnγn(m−n)Γn(n)eκhn
K(Y)|Z| (3.9)

where

(Z)ij =

∫ ∞
0

eyiγx/(1+γx)0F1( ;m− j + 1; x̂) dx

e(1+κ)xxj−n(1 + γx)b−m+1
,

for 1 ≤ i ≤ m,1 ≤ j ≤ n and (Z)ij = yj−n−1i , for 1 ≤ i ≤ m,n+ 1 ≤ j ≤ m,

with x̂ = κ(1 + κ)hx.

Proof. The proof is given in Appendix A.5.

Land Mobile Satellite Communication

The Land Mobile Satellite (LMS) MIMO channel can be viewed as a non-central
channel with random mean. Thus, the channel matrix model can be described as

H = H̄ + H̃ (3.10)

where the entries of H̃ are independent, zero-mean unit-variance complex Gaussian
and H̄ is a random matrix. As shown in [42], in a LMS channel the matrix H̄H̄H

follows a matrix-variate Γ(α,Ω) distribution [48] where α plays the role of a shape
parameter, while Ω is a scale parameter. Indeed, α can be viewed as a generalized
number of degrees of freedom of the non-centrality parameter, while Ω is related
to the average power of the random LoS component, as discussed in detail in [42].
Assuming Ω = ωI, HHH is unitarily invariant, as shown in [42, Property 1].

Under this assumption, the expression of the output pdf can be expressed as in
the following proposition.

Proposition 2. Given an LMS MIMO channel as in (3.10) with Ω = ωI,
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• for m ≤ n, the pdf of its output can be written as

p(Y) =
πm

γmΓm(n)(1 + 1/ω)mα
K(Y)|Z| , (3.11)

where

(Z)ij =

∫ ∞
0

eyi
γx

1+γx
1F1

(
α− j + 1;n− j + 1; x

1+ω

)
exxj−n(1 + γx)b−m+1

dx ;

• for m > n, the output pdf is given by:

p(Y) =
πn

γnγn(m−n)Γn(m)(1 + 1/ω)nα
K(Y)|Z| (3.12)

where

(Z)ij =

∫ ∞
0

eyi
γx

1+γx
1F1

(
α− j + 1;m− j + 1; x

1+ω

)
exxj−n(1 + γx)b−m+1

dx ,

for 1 ≤ i ≤ m,1 ≤ j ≤ n and (Z)ij = yj−n−1i , for 1 ≤ i ≤ m,n+ 1 ≤ j ≤ m.

Proof. The proof is given in Appendix A.6.

3.3.2 Interference Limited

We now consider the case where the main impairment to communication is repre-
sented by the co-channel interference. In particular, each interferer is seen from the
direct link receiver under its own random channel, which we assume to be affected
by Rayleigh fading, again with block-length b. We assume that there are L active
interferers in the network, each equipped, for homogeneity, with the same number
of antennas, n, as the transmitter of the useful signal. We evaluate the output pdf
when a whitening filter is applied to the received signal and we consider two channel
models. In the former, the desired signal undergoes Rayleigh fading; in the latter,
the direct link is affected by Rician fading, i.e., we assume the existence of an LoS
path between the useful transmitter and its intended receiver.

The received signal can be modeled as

Ỹ =
√
γHsX + W (3.13)

where

W =
L∑
`=1

Ĥ`X̂`

represents the interference. Specifically, the m × n matrix Ĥ` models the channel
connecting the `-th interferer with the receiver, while the n×b matrix X̂` represents
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the signal transmitted by the `-th interferer, ` = 1, . . . ,L. The interference can
be rewritten as W = ĤX̂ where Ĥ = [Ĥ1, . . . ,ĤL] is an m × Ln matrix and

X̂ = [X̂1
H, . . . ,X̂L

H]H is of size Ln × b. By assuming that the entries of X̂ are
i.i.d. complex Gaussian with zero mean and unit variance, the covariance of the
interference, conditioned on the knowledge of the composite channel matrix Ĥ, is
given by

R = E[WWH|Ĥ] = ĤE[X̂X̂H]ĤH = bĤĤH .

We apply to the received signal Ỹ the whitening filter B =
√
bR−1/2 and obtain

Y = BỸ

=
√
bR−1/2Ỹ

=
(
ĤĤH

)−1/2
(
√
γHsX + W)

=
√
γHX + N (3.14)

where H =
(
ĤĤH

)−1/2
Hs and N =

(
ĤĤH

)−1/2
W. Clearly, E[NNH|Ĥ] = bI. In

the following, we provide the pdf of Y.

Rayleigh Fading Channel

Proposition 3. We consider the interference-limited channel described by (3.13),
with L active interferers, i.i.d. Gaussian input and Rayleigh fading. If HsHs

H ∼
Wm(n,Θs) and ĤĤH ∼ Wm(Ln,Θ̂), then we have the following results.

• For m ≤ n, due to mathematical constraints, we only analyse the case of
spatially uncorrelated receiving antennas, i.e., Θs = θsI and Θ̂ = θ̂I. Then,
the pdf of Y can be written as

p(Y) =
πmΓm(Ln+ n)

γmωmnΓm(Ln)Γm(n)
K(Y)|Z| (3.15)

where ω = θs/θ̂ and

(Z)ij =

∫ ∞
0

eyi
γx

1+γxxn−j

(1 + γx)b−m+1(1 + x/ω)Ln+n
dx .

This result is obtained by substituting (2.34) in (3.2) and by exploiting the
result in Appendix A.11.
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• For m > n, the pdf of Y is given by:

p(Y) =
πn(Ln+ n−m)!mΓn(m)Γm(Ln+ n)K(Y)

Γn(Ln+ n)Γn(n)Γm(Ln)γnγn(m−n)

· |Ω|
m−n−1

V(Ω)

∫
|Ẽ||I + γΛ|m−b−1|F| dΛ

|Λ|m−n|I + Λ|Ln+n−m+1

(3.16)

where Ω = Θ
1/2
1 Θ−12 Θ

1/2
1 and the matrices Ẽ and F have been defined be-

low (3.4) and (2.35), respectively. This result is obtained by substituting (2.35)
in (3.4). However, we cannot solve the integral by applying the result in Ap-

pendix A.11 directly. Indeed, although matrices Ẽ and F are both of size m×m,
a portion of their columns and rows is composed of constant terms. Thus, we
need to resort to the property of the determinant of block matrices, in order to
obtain n × n blocks to which the result in Appendix A.11 can be applied. We
skip the details of this procedure due to the cumbersome expressions that are
involved.

Rician Fading Channel

Proposition 4. We consider the interference-limited channel described by (3.13),
with L active interferers, i.i.d. Gaussian input, Rician faded useful signal and
Rayleigh fading affecting the interfering links. For a Rician channel, matrix Hs

can be written as in (3.7)

Hs =

√
κ

κ+ 1
H̄s +

√
1

κ+ 1
H̃s

where κ is the Rician factor, H̄s is deterministic, and H̃s is complex Gaussian with
independent colums whose covariance is Θ. According to our assumptions on LoS
links made in Section 3.3.1, we have:

• for m ≤ n, setting Θs = Θ̂ = θI and H̄sH̄s
H = hI,

p(Y) =
πmΓm(Ln+ n)e−hκm/θ

γmΓm(n)Γm(Ln)κ̃−mn
K(Y)|Z| (3.17)

where

(Z)ij =

∞∫
0

eyi
γx

1+γx
1F1(L̃+ j;n−m+ j;hκκ̃x̃/θ) dx

(1 + γx)b−m+1(1 + κ̃x)L̃+1xm−nx̃1−j
(3.18)

with κ̃ = 1 + κ, L̃ = Ln+ n−m, and x̃ = x/(1 + κ̃x)
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• for m > n, and H̄s
HΘ−1H̄s = hI,

p(Y) =
πnΓn(Ln+ n)κ̃nme−hκn

γnγn(m−n)Γn(n)Γn(Ln+ n−m)
K(Y)|Z| (3.19)

where

(Z)ij =

∞∫
0

1F1(Ln+ n− j + 1;m− j + 1;hκκ̃x̃) dx

e
−yiγx
1+γx (1 + κ̃x)Ln+1x̃j−n(1 + γx)b−m+1

,

for 1 ≤ i ≤ m,1 ≤ j ≤ n, and (Z)ij = yj−n−1i , for 1 ≤ i ≤ m,n + 1 ≤ j ≤ m ;
with κ̃ = 1 + κ and x̃ = x/(1 + κ̃x).

Proof. The proof is given in Appendix A.7.

Note that also in this case mathematical issues made the analysis only possible
for uncorrelated receivers.

3.3.3 Exploitation of The Analytical Results

The mutual information between the channel input, X, and the channel output, Y,
normalized to the fading coherence length, can be expressed as:

I =
1

b
[h(Y)− h(Y|X)] (3.20)

where h(Y) = E[− log p(Y)] and h(Y|X) = E[− log p(Y|X)]. Once the pdf of
the channel output, p(Y), is obtained, it can be used to evaluate its differential
entropy, h(Y). For Rayleigh and Gaussian channels with identity covariance matrix,
considering that X is given, the output Y is complex Gaussian and its rows are
i.i.d. Hence, in order to derive the conditional differential entropy h(Y|X), we can
compute its value for an arbitrary row of Y and then scale it by the number of rows
of Y [35].

In [35], the mutual information has been computed in presence of Rayleigh chan-
nel and i.i.d. Gaussian input, for m ≤ n. In the following, we provide three exam-
ples of mutual information computation. First, we address the case of noise-limited
Rayleigh channel with m > n and, then, the noise-limited Rician channel, both with
m ≤ n and m > n.

In the case of Rayleigh channel, the conditional differential entropy is obtained
using [35, eq. (4)], while the unconditional differential entropy is evaluated using
(3.5) or (3.6) depending on the relationship between m and n. Fig. 3.1 shows the
mutual information as a function of the SNR, with b = 6,10, m = 2 and n = 1,
when no channel state information (CSI) is available and in the case of perfect CSI
at the receiver. The latter is obtained by computing [35, eq. (10)]. The results
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confirm the intuition, as well as previous analysis [38, 39]: the higher the SNR and
the value of b, the better the performance, while the lack of CSI causes a noticeable
degradation.
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Figure 3.1: Mutual information vs. SNR in Rayleigh channel: comparison between the case where
no CSI is available (solid line) and the case of perfect CSI at the receiver (dashed line), with
b = 6,10, m = 2 and n = 1.

For the Rician channel, the expression of the channel matrix is given by (3.7). By
adopting again the method in [35], the differential entropy of the output conditioned
on the input signal can be computed. Let us denote by y an arbitrary row of Y; then,
using [35, eq. (31)] and considering the translation-invariant property of differential
entropy, we can write the mutual information when the receiver does not have any
knowledge of the non-LoS component:

h(y|X) = h(yH|X) = E
[
log2

(
(πe)b

∣∣∣∣I +
ΓXHX

1 + κ

∣∣∣∣)] (3.21)

with the expectation being over the distribution of X. The above expression can
be conveniently computed resorting to [35, eq. (4)]. The unconditional differential
entropy of the output is derived through (3.8) and (3.9).

Fig. 3.2 shows the mutual information as a function of the SNR, with b = 6,
m = 2 and n = 2. Rician factors are set to κ = 1 and κ = 10. The plot depicts
the mutual information in the two cases where the receiver has knowledge of the
non-LoS component [35, eq. (10)] and where it does not (3.21). The deterministic
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Figure 3.2: Mutual information vs. SNR in Rician channel: comparison between the case where
the receiver does not have any knowledge on the non-LoS component (solid line) and when such
knowledge is available (dashed line), for b = 6, n = 2, m = 2 and κ = 1,10.

channel matrix in (3.7) is set as follows:

H̄ =

[ √
2 0

0
√

2

]
.

In Fig. 3.2, the relative gap between the achievable mutual information in the two
scenarios with κ = 1 is more evident than for κ = 10, since the higher the Rician
factor, the higher the amount of information on the LoS component, which is known
at the receiver. This is also compliant with the monotonicity results in [47].

Finally, Fig. 3.3 shows the mutual information for the two scenarios above, in
the case of m > n, namely, m = 2, n = 1, and b = 6. The Rician factor is
set to κ = 1 and κ = 5. In this scenario, the deterministic channel matrix is

set to H̄ =
[√

3/2,1/
√

2
]H

. Similar observations to those above hold. However,

comparing Fig. 3.2 to Fig. 3.3, we notice that, as expected, the reduction in the
number of antennas at the transmitter leads to severe performance degradation.
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Figure 3.3: Mutual information vs. SNR in Rician channel: comparison between the cases where
knowledge of the non-LoS component is not available at the receiver (solid line) and when it is
(dashed line). b = 6, m = 2, n = 1 and κ = 1,5.

3.4 Output Statistical Characterization with Prod-

uct Input Form

As in [35, 39, 8, 49], we assume total lack of CSI at both the ends of the wireless link.
This case is of particular interest for the energy efficiency of the communication, as
the availability of CSI would imply a high energy and time consumption at both the
transmitter and the receiver. Under this assumption, in the high-SNR regime, the
capacity-achieving input matrix X is proven to have a product structure [8, theorem
2] and can be written as

X =
√
cD1/2Φ (3.22)

where c is a normalizing constant and D is a real random n × n diagonal matrix,
which is positive definite with probability 1. The entries of D represent the amount
of transmit power allocated to each of the n transmit antennas, while Φ ∈ S(n,b)
represents the beamforming n×bmatrix. In order to be consistent with the definition
of SNR, we impose the constraint on the average input energy E[Tr{XXH}] = nb.
It follows that, for our specific input structure, the normalizing constant is given by:

c =
nb

E[Tr{D}]
. (3.23)

In [2, Lemma 10], it is proven that without CSI, in Rayleigh block-fading chan-
nels, the optimal power allocation at the transmitter depends on the relationship
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between the coherence length, b, and the total number of antennas at both the
transmitter and receiver. Specifically,

• If b ≥ m+ n, all diagonal entries of D are almost surely equal to 1. This case
corresponds to the conventional unitary space-time modulation (USTM) [8],
where D = I and c = b;

• If b < m+n, the optimal input is D ∼ Bn(b−n,m+n−b), which is referred to
as Beta-variate space-time modulation (BSTM) [2]. This scenario allows the
analysis of an uplink massive-MIMO system, with m ≥ n and even m � n,
which is relevant in the next-generation cellular setting.

3.4.1 Case b ≥ m+ n

As mentioned above, when b ≥ m+ n, the optimal power allocation over the trans-
mitter antennas is given by a diagonal matrix, D, with entries almost surely equal
to 1. Under these assumptions, the following results hold.

Proposition 5. Consider a channel as in (3.1), affected by i.i.d. block-Rayleigh
fading and with input given by (3.22). Let ∆ = γcD(I + γcD)−1 = diag(δ1, . . . ,δn),
with δi’s being distinct values. Then,

• for m ≤ n, the pdf of its matrix-variate output, conditioned on D and for
n ≤ b, can be expressed as

p(Y|D) =
Γm(b)K(Y)|YYH|m−n|G|

πm(b− n)!mV(∆)|I + γcD|m
(3.24)

where for j = 1, . . . ,n

(G)ij =

{
1F1(1; b− n+ 1; yiδj) i = 1, . . . ,m
δn−ij i = m+ 1, . . . ,n

• for m > n, the conditioned output pdf becomes

p(Y|D) =
Γn(b)K(Y)|∆|n−m|G|

πn(b−m)!nV(∆)|I + γcD|m
(3.25)

where i=1, . . . ,m, are given by

(G)ij =

{
1F1(1; b−m+ 1; yiδj) j = 1, . . . ,n

ym−ji j = n+ 1, . . . ,m .

Proof. The proof is given in Appendix A.8.
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Case D = I

The expressions of p(Y|D) in (3.24) and (3.25) hold provided that the diagonal ele-
ments of D are distinct. Thus, in general, the unconditional pdf of Y can be derived
by integrating p(Y|D) over the distribution of D. In this section, however, we focus
on a particular power allocation matrix, D = I, and, by (3.23), we consider c = b.
Note that, in this case the elements of D are not distinct, and expressions (3.24)
and (3.25) cannot be directly evaluated. Indeed, |G| = 0 and V(∆) = 0, and again
a limit procedure must be applied.

We first observe that, for D = I and c = b, we have ∆ = γbD(I + γbD)−1 = δ̄I
where δ̄ = γb

1+γb
.

• For m ≤ n, we apply the limit in (2.7) to the ratio |G|/V(∆) in (3.24) and,
after some algebra, obtain

lim
∆→δ̄I

|G|
V(∆)

=
πnΓm(n)(b− n)!m

Γn(n)Γm(b)
|YYH|n−m|Ĝ|

where Ĝ is an m×m matrix whose elements are given by (Ĝ)ij = ym−ji 1F1(n−
j + 1; b − j + 1; yiδ̄), i = 1, . . . ,m, j = 1, . . . ,m. By recalling (3.24), the
distribution of Y is then given by

p(Y) =
πnΓm(n)

πmΓn(n)

K(Y)|Ĝ|
(1 + γb)nm

. (3.26)

• For m > n, we apply the limit in (2.7) to (3.25) and obtain

lim
∆→δ̄I

|G|
V(∆)

=
πn(b−m)!n|Ĝ|
Γn(b−m+ n)

where in this case

(Ĝ)ij = yn−ji 1F1(n− j + 1; b−m+ n− j + 1; yiδ̄)

for i = 1, . . . ,m,j = 1, . . . ,n, and (Ĝ)ij = ym−ji for i = 1, . . . ,m,j = n +
1, . . . ,m.

By recalling (3.25), it follows that

p(Y) =
Γn(b)K(Y)δ̄n(n−m)|Ĝ|

Γn(b−m+ n)(1 + γb)nm
. (3.27)

We remark that, under the above assumptions, the output pdf also appears in
[38]. The corresponding derivations provided therein involve Fourier integrals and
Hankel matrices thus resulting in a slightly less compact form than ours.
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3.4.2 A Massive MIMO Regime: b < m+ n

Now, we consider the case of b < m + n; an instance of this scenario, by letting
m � n, can adequately model the reverse link of the celebrated massive-MIMO
channel [50]. In presence of uncorrelated block-Rayleigh fading, the high-SNR
capacity-achieving input structure, as already mentioned, departs from the equal
power allocation and is Beta distributed. We provide herein the output pdf for a
block-fading channel fed by BSTM [2].

Proposition 6. Given a channel as in (3.1), with X =
√
cD1/2Φ, n ≤ b, and

D ∼ Bn(b− n,n+m− b), the pdf of its output can be written as

p(Y) =
πnΓn(b)Γn(m)(γc)n(n−b)K(Y)|F4||Z|

γncn(n−1)/2Γn(n)Γn(b− n)Γn(n+m− b)
(3.28)

where Z is an n× n matrix, whose generic entry is given by:

(Z)ij =

∫ 1

0

(1− x)m−bxi−1−n

(1 + cγx)m−b+1

·

[
eyj

cγx
1+cγx −

b−n∑
`,k=1

(F−14 )`k

yn+k−bj

ey`+n
cγx

1+cγx

]
dx

(3.29)

with (F4)ij = yb−n−jn+i i,j = 1, . . . ,b− n.

Proof. The proof is given in Appendix A.9.

3.4.3 Exploitation of The Analytical Results

We now use the above results to compute the achievable mutual information in a
massive MIMO case. In order to derive the output differential entropy conditioned
on the input signal, h(Y|X), we exploit the analytic expression of the conditional
pdf of the output, p(Y|X), obtained above.

Proposition 7. Given a channel as in (3.1), the differential entropy of the output,
Y, conditioned on the channel input, X, can be written as:

h(Y|X) = bm log2(πe) +Km

n∑
i,j=1

aij

m−b∑
`=0

(−1)`
(
m−b
`

)
si,j,` − 1

·
[
log2(1 + cγ)− cγ2F1(1,si,j,`; si,j,` + 1;−γ)

si,j,` ln 2

]
(3.30)
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where K is a constant term, si,j,` = b− 2n + i + j + `, and aij is the (i,j)-cofactor
of an n× n matrix A such that

A`k =
Γ(b− 2n+ `+ k − 1)Γ(m− n+ 1)

Γ(b− 3n+m+ `+ k)
.

Proof. The proof is given in Appendix A.10.

The mutual information obtained in a massive-MIMO-like case is shown in the
following figures. Fig. 3.4 depicts the mutual information for n = 1, as the SNR
varies and m grows up to very large values. The plot also compares our results
(denoted by markers) are compared to the approximation given in [2] for the high
SNR regime (dashed lines). The two sets of curves match very closely for any value
of the parameters, as expected due to the tightness of [2, eq. (8)]. As m varies,
all three curves have the same slope, as this has been proven to be insensitive to
the number of receiving antennas in our setting [2, eq. (8)]. As expected, better
performance is obtained as m increases. However, interestingly, Fig. 3.5 shows that
a much higher improvement can be achieved as the fading coherence length and the
number of antennas at the transmitter sightly increase while m is fixed to 10. In
particular, by comparing the two plots, a limited gain in performance is obtained
when m increases, while, as expected, the mutual information growth is significant
when n is increased by 1.
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Figure 3.4: Mutual information vs. SNR in massive MIMO channel with BSTM: b = 3, n = 1 and
different values of m. Our results (denoted by markers) are compared to the approximation in [2]
(dashed lines).
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Figure 3.5: Mutual information vs. SNR in massive MIMO channel with BSTM: m = 10 and
different values of b and n. Our results (denoted by markers) are compared to the approximation
in [2] (dashed lines).

3.5 Conclusion

We obtained new, closed-form expressions for the probability density function of the
output signal of a block-fading MIMO channel. By relying on recent results from
the field of finite-dimensional random matrix theory, we provided results for the case
of an i.i.d. Gaussian input under the assumption that the Gramian of the channel
matrix is unitarily invariant. We addressed both the cases of Rayleigh and Rician
fading. Furthermore, we derived the output probability density function in the case
of product-form input. We particularized our newly derived expressions to those
already available in the literature for the canonical case of uncorrelated Rayleigh
fading, and we characterized the output signal behavior under different assumptions
on the amplitude fading distribution.
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Chapter 4

Characterization of Output
Signals for MIMO Block-Fading
Channels with Imperfect CSI

In this chapter, we provide an analytical characterization of the pdf of the output
of a single-user, multiple-antenna communication link, impaired by block-fading.
The analysis is carried out under the assumption of product structure for the input,
assuming Gaussian noise, and an imperfect estimation of the channel available to
the receiver. The model can be thought of as a perturbation of the case where
the statistics of the channel are perfectly known. Specifically, the average singular
values of the channel are given, while the channel singular vectors are assumed to be
isotropically distributed on the unitary groups of dimensions given by the number
of transmit and receive antennas. The channel estimate is affected by a Gaussian
distributed error, which is modeled as a matrix with i.i.d. Gaussian entries of known
covariance.

4.1 Introduction

The availability of an explicit statistical characterization for the output of a wire-
less channel is very relevant in both its communication- as well as its information-
theoretic performance analysis. Few explicit results are available in the literature
for the output signal pdf in the case of MIMO block-independent fading channels.
Among these, there are [38, 35, 2], which all focus on the case of block-Rayleigh fad-
ing. In those papers, the output statistics are derived under different assumptions on
the relative values of the number of involved antennas and of the coherence length of
the fading. The input distribution, too, plays a crucial role in the cited derivations.
More specifically, in [35] the authors assume the input to be i.i.d. Gaussian and

43



4 – Characterization of Output Signals for MIMO Block-Fading Channels with Imperfect CSI

investigate the behavior of the output distribution as the fading coherence length
varies from being quite shorter, compared to the overall number of transmit and re-
ceive antennas, up to a very long fading duration. In both [38] and [2], instead, the
input is assumed to be given by the product of a diagonal matrix (representing the
power allocation among the transmit antennas) times an isotropically distributed
matrix with unitary columns. The main difference between the two papers is the
assumption on the fading duration. Indeed, the first one focuses on the case where
the coherence length of the Rayleigh fading is greater than the number of involved
antennas; in this case, the optimal power allocation matrix turns out to be a scaled
version of the identity matrix [39]. On the other hand, [2] solves the problem of
characterizing, in the high SNR regime, the optimal power allocation profile, as-
suming the fading coherence length to be very short compared to the number of
antennas in the wireless link. In this last case, indeed, the diagonal matrix of the
power allocation is characterized by a Beta joint distribution of the entries.

In this chapter, we consider a single-user, multiple-antenna channel, affected by
AWGN and block fading. Only partial CSI is available to the receiver, under the
form of an imperfect estimation of the channel, affected by a Gaussian-distributed
estimation error, as assumed, e.g. in [51] for the non block-fading case. In this
scenario, the MIMO channel, as seen by the receiver can be adequately modeled as
an estimated matrix, plus a matrix of uncorrelated, jointly Gaussian entries. Due to
the AWGN assumption, this yields a non-central Gaussian behavior of the output
signal, conditionally on the input structure and on the channel estimate. The main
difference with respect to previous results is the model of the estimated channel
matrix. This leads to a slightly more difficult algebra, and the desired statistics are
to be evaluated relying on tools usually exploited in advanced analysis of non-central
Wishart matrices (see e.g. [52, and references therein]). Some open mathematical
issues in the evaluation of the output pdf as a function of the estimation quality are
also reported and discussed.

4.2 System Model

We consider a single-user multiple-antenna communication, with m and n denoting
the number of receive and, respectively, of transmit antennas. Assuming block-
fading with block length b, the channel output can be described by the following
linear relationship:

Y =
√
γH X + N. (4.1)

In (4.1), Y is the m× b output, X is the complex n× b input matrix, and N is the
m× b matrix of additive complex circularly symmetric Gaussian noise. γ = SNR/n
represents the normalized per-transmit antenna SNR.
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H is a m× n complex channel matrix, whose entries represent the fading coeffi-
cients between each transmit and each receive antenna. Our assumption of partial
CSI to the receiver implies that the channel matrix can be expressed as H = Ĥ+E,
with E the zero-mean matrix of the estimation errors, with i.i.d. entries 1 of variance
σ2
ε . The statistics of Ĥ will be specified, according to different assumptions in the

following sections. Nevertheless, we will assume in general that the channel matrix
admits a Singular Eigenvalue Decomposition, i.e., we can always write Ĥ = UΣ̂VH.
U is an isotropic square unitary matrix of dimension m and V isotropic of dimension
n.

The input matrix X is assumed to have a product structure, i.e.2, X = D1/2Φ,
where D is a random, n-dimensional, diagonal matrix, which is positive definite
w.p. 1. The diagonal entries of D are denoted by di’s, i = 1, . . . ,n, and represent
the amount of transmit power allocated to each of the n transmit antennas. Φ is
an n × b isotropic matrix, such that ΦΦ† = In. We will refer to square isotropic
matrices as Haar, and to rectangular isotropic matrices as Stiefel, respectively (see
e.g. [38, 39]).

4.3 Statistical Characterization of The Channel

Output

In this Section, we provide our main result, along with its detailed proof. We remark
that the obtained results can be further particularized to two relevant cases, namely
D proportional to a Beta-distributed matrix-variate and D = cI. Recall that D = cI
is optimal in the case of total absence of CSI as b ≥ n + m, and is referred to as
the Unitary Space Time Modulation (USTM) [38], while the Beta-distributed D
provides optimal performance as b < n + m. In order to derive our results, we
assume that n ≤ min{r,m}.

Proposition 8. Given a channel as in (3.1), assume that an MMSE estimate of

the channel matrix H is provided to the receiver, namely Ĥ has i.i.d. complex
Gaussian entries with zero-mean and variance 1−σ2

ε . The pdf of the channel output,
conditionally on the input power allocation matrix D, can be expressed as

p(Y|D) =
|F̃|e−‖Y‖2 |In + γD|b−n−m

∏b
i=b−n+1 Γ (i)

(γn|D|)b−n πmbV(YHY)V(Λ̃−1)v−1S

1This model is a particular case of [53, Hypothesis II]. Indeed, it can be thought as being a
permutation of the perfect receiver side information case. As the error variance σ2

ε → 0, this
models the instantaneous receiver CSI.

2This input structure is relevant to the analysis since it is capacity-achieving in absence of CSI
at both the ends of the link [39, Thm2].
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where

vS =
ṽb
ṽb−n

denotes the volume of the Stiefel manifold of dimension n× b, with

ṽn =
2nπn

2

Γn(n)

being the volume of the unitary group of size n, and

Λ̃ = In +
D−1

γ
.

Moreover, F̃ is a square matrix of size b, whose generic entry is given by F̃i,j = eγλ̃iy
2
j

if 1 ≤ i ≤ n and 1 ≤ j ≤ b, otherwise F̃i,j = (γy2j )
(b−i), where y2j is the j-th

eigenvalue of Y†Y and λ̃i the i-th entry of the diagonal matrix Λ̃.

Proof. By our assumptions, Y|X ∼ CN (0,Ib + γX
H
X), i.e.,

p(Y|X) =
e
−Tr

(
YC−1Y

H
)

πmb|C|m
, (4.2)

with C = Ib + γX
H
X. Replacing X = D1/2Φ in (4.2) and integrating over Φ by

exploiting [2, Eq.(57)], the result immediately follows. Notice that the algebra in
our derivation is the same as that in [2, Appendix A], even if therein the authors did
not refer to channel estimation. The fact that the algebra in the two cases coincides
is due to the assumption of having the error matrix variance equal to σ2

ε and the
MMSE estimate variance equal to 1− σ2

ε (see e.g. [54, and references therein]).

Proposition 9. Given a channel as in (4.1), assume that an instantaneous channel

estimate with Gaussian distributed error E is provided at the receiver, i.e., Ĥ is
a deterministic matrix. The pdf of the channel output, conditionally on the input
matrix X, can be expressed as a function of Ĥ. I.e.,

p(Y|X) = e
Tr
(
Y

H
YΦ

H
Λ−1Φ

)
e−||Y||

2
e
−Tr

(
Ĥ

H
ĤD(In+γσ2

εD)−1
)

πmb|In + γσ2
εD|m

·

e
√
γTr

(
YΦ

H
(In−Λ−1)D1/2Ĥ

H
+ĤD1/2(In−Λ−1)ΦY

H
)

(4.3)

where

Λ = In +
D−1

γσ2
ε

.

46



4 – Characterization of Output Signals for MIMO Block-Fading Channels with Imperfect CSI

Notice that (4.3) unfortunately does not depend solely on D, since the dependence
on the input beamforming matrix Φ cannot be averaged out. Indeed, a closed-form
evaluation of ∫

S(n,b)
e
√
γTr

(
YΦ

H
(In−Λ−1)D1/2Ĥ

H
+ĤD1/2(In−Λ−1)ΦY

H
)
·

e
Tr
(
Y

H
YΦ

H
Λ−1Φ

)
dΦ (4.4)

would require the extension to unitary matrices of the result [52, Integral B.1], cur-
rently proven only for arbitrary complex matrices. A situation akin to this last one,
but even more involved, is met when one eventually assumes that only the channel
singular values are reliably estimated, while the left and right singular vectors are
not. That is, the average singular values Σ̂ of the channel are given, while the
channel singular vectors are assumed to be isotropically distributed on the unitary
groups of dimensions given by the number of transmit and receive antennas for V
and U respectively. In this case, too, in order to perform the average with respect
to V, one would need to generalize the result mentioned above[52, Integral B.1] to
unitary matrices.

Proof. The result follows by observing that, for deterministic Ĥ, Y|X is noncentral
Gaussian, with correlated entries, i.e.,

p(Y|X) =
e
−Tr

(
(Y−√γĤ X)C−1(Y−√γĤ X)

H
)

πmb|C|m
, (4.5)

with C = Ib + γσ2
εX

H
X. Since, by assumption, n ≤ b,

C = Ib + γσ2
εΦ

H

DΦ,

and, by matrix inversion Lemma,

C−1 = Ib −Φ
H

(
In +

D−1

γσ2
ε

)−1
Φ,

which, replaced in (4.5), together with X = D1/2Φ, leads to (4.3).

Between the two limiting cases of Gaussian and deterministic distributed channel
estimate, we next consider the case where Ĥ is a complex random matrix with a
smooth distribution. In this case, we are able to give an approximation of the output
pdf, up to a scaling factor cσ2

ε
, depending on the estimation error variance σ2

ε .

47



4 – Characterization of Output Signals for MIMO Block-Fading Channels with Imperfect CSI

Theorem 4. Given a channel as in (4.1), assume that Ĥ is a complex random
matrix with a smooth distribution. The pdf of the matrix-variate channel output,
conditionally on the input power allocation matrix D, can be expressed then as

p(Y|D) =
γ−mncσ2

ε
|F|e−‖Y‖2

∏b
i=b−n+1 Γ (i)vS

V(YHY)V(Θ)|D|m|(πΘ|b−n)
. (4.6)

In (4.6), F is a square matrix of size b, whose generic entry Fi,j = eθiy
2
j if 1 ≤ i ≤ n

and 1 ≤ j ≤ b, otherwise Fi,j = (y2j )
(b−i), with y2j the j-th eigenvalue of Y†Y, and

θi the i-th element of the diagonal matrix Θ = Λ−1 + In + γσ2
εD of size n.

Proof. Following the same arguments as for the previous Proposition, we start by
writing

p(Y|X,Ĥ) =
e
−Tr

(
(Y−√γĤ X)C−1(Y−√γĤ X)

H
)

πmb|C|m
, (4.7)

again with C = Ib + γσ2
εX

H
X. Let us now define the matrix

∆ = D(In + γσ2
εD)−1 , (4.8)

which will be useful in order to write more compact expressions during the proof.
We first expand the product in (4.7), obtaining

p(Y|X,Ĥ) =
e−||Y||

2

πmb|C|m
e
−γTr

(
Ĥ

H
ĤXC−1X

H
)

e
Tr
(
Y

H
YΦ

H
Λ−1Φ

)
e
√
γTr

(
YC−1X

H
Ĥ

H
+ĤXC−1Y

H
)
. (4.9)

Recalling the definition of C,
XC−1X

H

= ∆.

To obtain the expression for p(Y|D), we have to integrate out the dependence

on both Ĥ, and Φ.
Indeed, one can average out the dependence on the complex matrix Ĥ by virtue

of [52, Integral B.1], thus obtaining

cσ2
ε

∫
C
e
−γTr

(
∆Ĥ

H
Ĥ
)
e
√
γTr

(
YC−1X

H
Ĥ

H
+ĤXC−1Y

H
)

dĤ =

cσ2
ε
|D−1C|m

(
π

γ

)mn
e
Tr
(
Y

H
YΦ

H
(In+γσ2

εD)Φ
)

(4.10)

where the input structure has been exploited. From (4.10), we can write that

p(Y|Φ,D) =

(
π

γ

)mn
e−||Y||

2

πmb|D|m
e
Tr
(
Y

H
YΦ

H
(Λ−1+(In+γσ2

εD))Φ
)
. (4.11)
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The next integral is to be performed over the rectangular matrix Φ. Since only
the exponential term depends on Φ, we can write the integral as∫

S(n,b)
e
Tr
(
Y

H
YΦ

H
(Λ−1+(γσ2

ε )
2D2(In+γσ2

εD)−1)Φ
)

dΦ

=
vS
∏b

i=b−n+1 Γ (i)

|Θ|b−nV(YHY)V(Θ)
|F| (4.12)

where, again, the result has been obtained following the same approach as in [2,
Formula (54)]. Replacing the integration result into (4.11), we finally get (4.6).

We remark that, by following the above steps, when Ĥ is assumed to be Gaussian
distributed, we recover the same result as in Proposition 8.

In the case n = b, the derivation simplifies, since no limiting procedure has to be
performed in order to evaluate the integral over Φ. Indeed, we can directly apply
[29, Formula (92)] to (4.12) thus obtaining∫

S(n,b)
e
Tr
(
Y

H
YΦ

H
(Λ−1+(In+γσ2

εD))Φ
)

dΦ = 0F 0

(
Y

H

Y,Θ
)
.

Gathering all together, the alternative expression of (4.6) in the case of n = b is
given by

p(Y|D) =

(
π

γ

)mn
e−||Y||

2

πmb|D|m 0F 0

(
Y

H

Y,Θ
)
. (4.13)

4.4 Conclusion

We provided expressions for the output statistics of block-fading MIMO channels,
under the assumption that the receiver is given an channel estimate that is affected
by Gaussian error. We derived the pdf of the received signal in several cases of
practical interests, including the MMSE estimation, and we presented some open
issues regarding the channel output characterization.
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Chapter 5

Ergodic Capacity Analysis of
MIMO Relay Network over
Rayleigh-Rician Channels

In this chapter, we present an analytical characterization of the ergodic capacity
for an AF MIMO relay network over asymmetric channels. Indeed, such two-hop
system, the source-relay and relay-destination channels undergo Rayleigh and Ri-
cian fading, respectively. Considering arbitrary-rank means for the relay-destination
channel, we first investigate the marginal distribution of an unordered eigenvalue of
the cascaded AF channel, and we provide the analytical expression of the ergodic
capacity of the system. The closed-form expressions that we derive are computa-
tionally efficient and validated by numerical simulation. Our results also show the
impact of the signal-to-noise ratio and of the Rician factor on such asymmetric relay
network.

5.1 Introduction

Data transmission through relay channel has been proved to improve coverage, re-
liability and quality-of-service in wireless systems. Among several proposed relay
schemes, amplify-and-forward (AF) has attracted significant attention since it can
be easily analyzed and implemented. An AF two-hop system is a classic half-duplex
model, where the source sends signal to the relay in the first hop, and then the relay
broadcasts the received signal to the destination after a simple amplification. Such a
model can then be enhanced by introducing MIMO technology, which can bring re-
markable improvements in network performance over conventional single-input and
single-output systems.

The performance of AF MIMO relay networks have been widely analyzed by
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applying either asymptotic analysis [55, 56] (i.e., assuming an infinite number of
antennas or nodes), or finite random matrix theory [57]. What these two approaches
have in common is the assumption that both channels in the relay system are subject
to Rayleigh fading. In real-world environments, however, the relay node may be
deployed closer either to the source or to the destination. In this case, a strong LoS
path between the two close-by nodes may exist and the channel on the second hop
is affected by Rician, rather than Rayleigh, fading. Note that, such an asymmetric
channel model can be seen as a generalization of the traditional two-hop Rayleigh
fading channel, since Rayleigh fading can be considered as a limiting case of Rician
fading.

In the first of the above asymmetric scenarios (i.e., a relay close to the source),
the analysis of the system performance is trivial. Much more challenging, instead,
is the case where the channels on the two hops are modeled as Rayleigh and Rician,
respectively. This second scenario has indeed attracted significant attention in the
literature. In particular, [58] provides the exact expression of the moment generation
function and the moments of the instantaneous SNR, under the assumption that
an orthogonal space-time blocking coding scheme is applied. In [59], the network
performance is studied considering the relay to be equipped with a single antenna.
To the best of our knowledge, no analytical expression instead exists for the ergodic
capacity in a AF MIMO relay network over asymmetric fading channels in presence
of a multiple-antenna relay node. In this letter, we therefore fill this gap. By using
finite-dimensional random matrix theory, we provide the closed-form expression of
the unordered eigenvalue distribution of the cascaded asymmetric relay channel when
the two hops are characterized by Rayleigh and Rician fading, respectively. Through
this expression, we also derive the analytical expression of the ergodic capacity of the
system, with arbitrary-rank means of Rician channel. Furthermore, by numerical
simulation, we investigate the network performance as the Rician factor and the
SNR vary.

5.2 System Model

We consider a two-hop relay network where the source, the relay and the destination
nodes are equipped with n, r and m antennas, respectively. All nodes operate in half-
duplex mode. We assume that no direct link exists between source and destination.
The destination has perfect CSI on the source-relay and relay-destination channels,
while the source and relay have no CSI.

Following [56, 57], we consider that data transmission takes place in two phases,
according to the following scheme. In the first phase, the source transmits signal x,
which is a vector with n components, towards the relay. The entries of x are assumed
to be i.i.d., zero-mean, circular symmetric, complex Gaussian random variables and
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the power irradiated by each antenna is assumed to be equal to ρ/n, i.e., E[xxH] =
ρ/nIn, where ρ is the signal-to-noise ratio. In the second phase, the relay simply
forwards a scaled version of the signal it received from the source. Let H1 ∈ Cr×n

be the channel matrix between source and relay, and H2 ∈ Cm×r be the channel
matrix between relay and destination. Then, the signal received at the destination
can be expressed as

y = H2AH1x + H2Anr + nd (5.1)

where A =
√
aIr is an r × r linear transformation matrix representing the power

amplification at the relay, and nr and nd are, respectively, the noise vectors at the
relay and at the destination, whose entries are modeled as i.i.d. zero-mean, unit-
variance, Gaussian random variables.

The source-relay channel is assumed to be affected by Rayleigh fading. Thus,
the entries of H1 are i.i.d complex Gaussian random variables with zero mean and
unit variance. On the other hand, the relay-destination channel is assumed to be
affected by Rician fading so that the entries of H2 can be written as

H2 =

√
κ

κ+ 1
H̄2 +

√
1

κ+ 1
H̃2 (5.2)

where κ is the Rician factor, H̄2 is deterministic and the entries of H̃2 are i.i.d.
complex Gaussian with zero mean and unit variance. For simplicity of notation, we
define κ̃ = 1 + κ.

Let q = min(r,m), s = min(n,q), Λ = diag(λ1, . . . ,λq) be the non-zero eigenval-
ues of H2H2

H, and H be an n × q random matrix with i.i.d, circularly symmetric,
complex Gaussian entries with zero mean and unit variance. Then, the ergodic
capacity of the AF-MIMO relay channel described above is given by [57, eq. (13)]

C(ρ) =
s

2

∫ ∞
0

log2

(
1 +

ρa

n
z
)
p(z) dz (5.3)

where z denotes an unordered eigenvalue of the random matrix Z = HHBH, p(z)
denotes the probability density function (pdf) of z, and B = Λ(I + aΛ)−1 is a q× q
diagonal matrix.

5.3 Performance Analysis

The ergodic capacity of the above described AF-MIMO channel can be obtained by
deriving the closed-form expression of p(z) and plugging it into (5.3). In order to
do so, we first assume the LoS component of the Rician channel (i.e., H̄2) to be
full-rank; this case is referred to as “non-i.i.d. Rician fading” in [60] and allows for
a relatively simpler analysis (Sec. 5.3.1). Then, we will deal with the case where H̄2

is low-rank (Sec. 5.3.2).
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5.3.1 Closed-form Expression of The Ergodic Capacity

The pdf of the unordered eigenvalue of Z = HHBH can be written as

p(z) =

∫
B

pz|B(z|B)pB(B) dB (5.4)

where pz|B(z|B) is the pdf of z conditioned on B and can be written as [57, eq.
(95)]:

pz|B(z|B) =
1

sV(B)

q∑
k=q−s+1

zn+k−q−1

Γ (n− q + k)
|Vk| . (5.5)

In (5.5), V is a q × q matrix with entries given by:

(Vk)i,j =

{
bq−ji , q − j + 1 6= k

e−z/bibq−n−1i , q − j + 1 = k .

The expression of pB(B) is instead given by the following proposition.

Proposition 10. Consider a communication system and matrix B as described
above. Then, the pdf of B can be written as:

pB(B) =
κ̃pqV(B)|B|p−q|I− aB|−p−1|F|

(p− q)!qeTr{κ̃B(I−aB)−1+κM}V(κ̃κM)
(5.6)

where F = {0F1(; p− q + 1;κκ̃µibj/(1− abj))}, and M = H̄2H̄2
H.

Proof. We first observe that H2 = Ĥ/
√
κ̃ where Ĥ =

√
κH̄2+H̃2 is a standard non-

central Wishart matrix with mean
√
κH̄2. The joint pdf of the ordered eigenvalues,

Λ̂, of ĤHĤ is given by [29, eq. (102)]; by using (2.18), it can be written as:

pΛ̂(Λ̂) =
|Λ̂|p−qV(Λ̂)|{0F1(; p− q + 1;κµiλ̂j)}|)

(p− q)!qeTr{Λ̂+κM}V(κM)
(5.7)

where µi, i = 1, . . . ,q, are the eigenvalues of M = H̄2H̄2
H and Λ̂ is a diagonal matrix

whose elements are λ̂j, j = 1, . . . ,q. The pdf of Λ can be then obtained as

pΛ(Λ) = κ̃qpΛ̂(κ̃Λ)

=
κ̃pqV(Λ)|{0F1(; p− q + 1;κκ̃µiλj)}|
(p− q)!q|Λ|q−peTr{κ̃Λ+κM}V(κ̃κM)

. (5.8)

Since B = Λ(I + aΛ)−1, the pdf of B can be written as a function of the pdf of
Λ, i.e., pB(B) = |I − aB|−2pΛ(B(I − aB)−1) which yields (5.6). Note that in the
derivation of (5.6) we exploited the property V(B(I−aB)−1) = V(B)|I−aB|1−q.
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Then, we replace pB(B) in (5.4) with the expression in (5.6) and obtain the
result below.

Proposition 11. The pdf of an unordered eigenvalue z of Z = HHBH is given by

p(z) =
A

V(M)

q∑
k=q−s+1

zck−1

Γ(ck)
|Wk| (5.9)

where ck = n− q + k, the constant A is given by

A =
κ̃pqe−κTr{M}

s(p− q)!q(κκ̃)q(q−1)/2
, (5.10)

and Wk is a q × q matrix whose entries are as follows:

(Wk)i,j =

j−1∑
h=0

(
j−1
h

)
Γ (dj,h)1F1(dj,h; p− q + 1;κµi)

a−hκ̃dj,h
(5.11)

for i,j = 1, . . . ,q, j 6= q − k + 1 and

(Wk)i,j =
2e−za

κ̃p−n

∞∑
`=0

n∑
h=0

(
n
h

)
(κµi)

`(zκ̃)g`,h/2

a−hκ̃h`!(p− q + 1)`
Kg`,h(2

√
zκ̃) (5.12)

for i = 1, . . . ,q, j = q − k + 1, where dj,h = p + 1− j + h and g`,h = p− n + ` + h.
In (5.12), Kv(x) denotes the modified Bessel function of the second kind.

Proof. As mentioned above, p(z) can be computed by using (5.6) in (5.4). As for
the integration domain, we observe that the i-th eigenvalue of H2H2

H, λi, is such
that 0 ≤ λi < +∞. Thus, bi = λi/(1 + aλi) has support in [0,1/a]. Moreover, the
expression of pB(B) provided in (5.6) refers to the ordered eigenvalue distribution of
B, hence the integral in (5.4) should be taken under the constraint 0 ≤ bq < . . . <
b1 ≤ 1/a. By substituting (5.5) and (5.6) in (5.4), we obtain:

p(z) =

q∑
k=q−s+1

Azck−1

V(M)Γ(ck)

∫
|I− aB|−p−1|F||Vk| dB

|B|q−peTr{κ̃B(I−aB)−1} (5.13)

=
A

V(M)

q∑
k=q−s+1

zck−1

Γ(ck)
|Wk| (5.14)

where the constant A is given by (5.10) and ck = n− q + k. The q × q matrix Wk

appearing in (5.14) derives from the application of [17, Corollary 2] to the integral
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in (5.13) and its entries are given by

(Wk)i,j =


∫ 1

a

0

e
−κ̃x
1−axxp−jfij

(1− ax)p+1
dx, j 6= q − k + 1∫ 1

a

0

e
−κ̃x
1−ax−z/xfij

x1−p+n(1− ax)p+1
dx, j = q − k + 1

(5.15)

where fij = 0F1(; p − q + 1;κκ̃µix/(1 − ax)) has been defined below (5.6). The
integrals in (5.15) can be solved by a suitable change of the integration variable
and by expanding the powers of the binomial κ̃ + ax. As a result, after some
computations (omitted for lack of space), the matrix Wk can be rewritten as in (5.11)
and (5.12).

Eventually, the analytical expression of ergodic capacity can be obtained by
substituting (5.9) into (5.3).

5.3.2 Low Rank LoS Rician Fading Component

We now consider the case where the LoS component of the Rician channel, H̄2, does
not have full rank, i.e., the terms |Wk| and V(M), respectively at the numerator
and denominator of (5.9), vanish thus leading to a 0/0 indeterminate form. In
order to circumvent this problem, a limit must be taken, which can be evaluated
by using l’Hôpital’s rule. In particular, in the following we assume H̄2

HH̄2 to have
0<g<q non-zero eigenvalues, i.e., µg+1 = µg+2 = · · · = µq = 0. Then, the pdf of an
unordered eigenvalue z of Z = HHBH can be derived by taking the following limit:

p(z)low = lim
µg+1,...,µq→0

p(z)

= A

q∑
k=q−s+1

zck+1

Γ(ck)
lim

µg+1,...,µq→0

|Wk|
V(M)

=
πqΓg(q)

πgΓq(q)

|W̃k|
V(M̃)

|M̃|g−q (5.16)

where we used the result reported in (2.9). In (5.16), M̃ is a g × g matrix with

eigenvalues µ1, . . . ,µg and W̃k is a q × q matrix whose (i,j)-th entry is given by
(Wk)i,j, for i = 1, . . . ,g and j = 1, . . . ,q;

(
W̃k

)
i,j

=

j−1∑
h=0

(
j−1
h

)
Γ(dj,h + q − i)κq−i

(p− q + 1)q−ia−hκ̃dj,h
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for i = g + 1, . . . ,q, and j 6= q − k + 1; and(
W̃k

)
i,j

=
2e−za

κ̃p−n

n∑
h=0

(
n
h

)
κq−i(zκ̃)gq−i,h/2

a−hκ̃h(p− q + 1)q−i
Kgq−i,h(2

√
zκ̃)

for i = g + 1, . . . ,q, j = q − k + 1. This result has been obtained by deriving
q − j times (with respect to µj) the (i,j)-th entry of Wk and by evaluating it in
µj = 0, for i = 1, . . . ,q and j = g + 1, . . . ,q. The other entries of Wk have been
left unchanged. Again, the expression of ergodic capacity with low-rank LoS Rician
fading component can be obtained by substituting (5.16) into (5.3).

5.4 Numerical Results

We now validate our analytical derivations through Monte Carlo simulation, and
show the information theoretic performance of the channel of (5.1). We consider
n = 2, r = 3, m = 4, and the Rician channel with LoS matrix that satisfies
Tr{H̄2

HH̄2} = rm. More specifically, in Figs. 5.1 and 5.2 we have employed both
the full-rank LoS matrix H̄f

2 and low-rank LoS matrix H̄l
2, given by

H̄f
2 =

1√
2


1
√

2 2

1 1
√

2

1
√

3 1

1
√

2
√

5

 ; H̄l
2 =


1 1 1
1 1 1
1 1 1
1 1 1

 .

Also, while computing the integrals in (5.3) and (5.4), we upper bound the integra-
tion variables z and λ so as to obtain an expression that can be efficiently computed.
In numerical simulation, an accurate result can be obtained already for λ ≤ 20 and
z ≤ 100.

Figure 5.1 shows the excellent match between the pdf of z, p(z), computed
through the analytical expression in (5.4) and the results obtained via Monte Carlo
simulation. In particular, considering the full-rank LoS component, Figure 5.1(a)
presents the results for different values of the Rician factor κ as well as SNR (ρ), and
compares our result to that provided in [57] for the Rayleigh-Rayleigh channel. As
expected, as κ decreases, p(z) converges to that obtained for Rayleigh-Rayleigh relay
channel (κ = 0). Figure 5.1(b) presents the same comparison between analytical
and simulation results considering low-rank LoS component. Compared with p(z)
in full-rank LoS case, Figure 5.1(b) shows a higher concentration of z with smaller
value, which incurs the lower ergodic system capacity in low-rank LoS case that can
be observed in Figure 5.2.

Figure 5.2 depicts the ergodic capacity of the relay system computed through (5.3)
and via Monte Carlo simulation, for different values of the Ricean factor and rank of
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LoS component. Again, analytical and numerical results are remarkably close. The
fact that the lower the Rician factor is, the higher the ergodic capacity becomes,
confirms the validity of our results.
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Figure 5.1: Comparison between exact analysis and Monte Carlo simulation: pdf of an unordered
eigenvalue z, for full-rank LoS component (top) and low-rank LoS component (bottom).
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Figure 5.2: Comparison between exact analysis and Monte Carlo simulation: Ergodic capacity vs.
SNR with different values of the Rician factor and rank of LoS component.

5.5 Conclusion

We have investigated the ergodic capacity performance of AF MIMO relay net-
works over asymmetric Rayleigh-Rician channels. In the two cases where the Rician
channel has full-rank and low-rank means, we derive the closed-form expression for
the marginal pdf of an unordered eigenvalue of the cascaded AF channel. Using
these analytical expressions, we derived the ergodic capacity of the system. Our

57



5 – Ergodic Capacity Analysis of MIMO Relay Network over Rayleigh-Rician Channels

analysis was validated by showing the excellent matching existing between the re-
sults obtained through our exact expressions and those obtained via Monte Carlo
simulation.
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Chapter 6

Conclusions and Future Work

The topic of this thesis is the application of finite random matrix theory in multiple-
antenna wireless communication systems. The contribution can be summarized into
two categories: the first is to provide the closed-form output statistics of MIMO
block-fading channels with respect to several channel fading models, while the sec-
ond is to analyze the ergodic capacity of MIMO relay channels over asymmetric
fading channels. In the following, we summarize the contributions and discuss fu-
ture directions of research.

6.1 Summary of Contributions

New results on the finite random matrix theory have been presented in Chapter
2. Prior to the description of the novel expressions, a brief overview of the finite
random matrix theory has been given, where fundamental definitions, the matrix-
variate distribution and the eigenvalue distribution in random matrix theory have
been declared.

Chapter 3 has presented compact expressions of output density in MIMO block-
fading channels, paving the way to a more detailed analytical information-theoretic
exploration of communications in presence of block-fading. Specifically, the entropy
of the unconditional and conditional output have been computed through Monte-
Carlo method using the corresponding output pdf. After that, the mutual infor-
mation of the system has been obtained. The analysis has been performed under
the assumptions of two different input structures and absence of any CSI at the
transmitter or the receiver.

• When the channel is fed by the i.i.d. Gaussian input, we have focused on
the analysis of some classes of channel matrices whose Gramian is unitarily
invariant. Although the i.i.d. Gaussian input is not generally capacity achiev-
ing input without perfect CSI, the mutual information obtained represents the

59



6 – Conclusions and Future Work

highest spectral efficiency that can be obtained using Gaussian codebooks.

– Considering that the channel impairment is dominated by AWGN noise,
we have derived the unconditional output pdf with the channels subject to
Rayleigh fading, Rician fading and LMS characterization. Analysis of the
output statistics are been performed with arbitrary number of antennas
in the system. Note that the output pdf for MIMO block-fading Rayleigh
channels has been derived in [35].

– Considering that the channel impairment is dominated by the co-channel
interference, we have evaluated the output pdf when a whitening filter is
applied to the received signal. We have considered two fading channel
scenarios where the desired signal undergoes Rayleigh channel and Rician
channel.

• In the high-SNR regime, the capacity achieving input of the block-fading chan-
nels without perfect CSI has been derived as a product between a diagonal
matrix and a Stiefel matrix. The diagonal elements are determined by the
relationship between the coherence length and the sum of terminal antennas.

– When the coherence length is larger than the sum of terminal antennas,
the diagonal entries are almost surely equal to 1. We have derived the
unconditional output pdf as well as the conditional output pdf, separately.

– When the coherence length is less than the sum of terminal antennas, the
diagonal entries are distributed as Beta distribution. The correspond-
ing unconditional output pdf has been derived. The mutual information
computed through the closed output statistics are tightly aligned with
the approximation expression given in [2].

Chapter 4 has provided the output statistics of MIMO block-fading channels with
imperfect CSI. The CSI received by the receiver is impaired by AWGN Gaussian
noise and the input is assumed as a product form, which is proven to be capacity
achieving in block-fading channels without CSI.

• When the entries of the estimated channel behave as i.i.d. Gaussian distribu-
tion, the output pdf conditional on the diagonal matrix in the input has been
given.

• When the entries of the estimated channel is assumed to be known with a
Gaussian distributed error, the output pdf conditional on the input signal has
been given.
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• When the estimated channel is subject to a smooth distribution, the output
pdf conditional on the diagonal matrix in the input has been given. Note that
when the estimated is subject to Gaussian distribution, this general result
turns out to be the result given in the first case.

Chapter 5 has presented the ergodic capacity analysis of MIMO relay network
over asymmetric fading channels. In this AF relay network, the first channel between
the source and the relay is subject to Rayleigh fading, while the second channel
between the relay and the destination is subject to Rician fading.

• The unordered eigenvalue distribution of the cascaded asymmetric relay chan-
nel has been first characterized, with arbitrary number of antennas in each
terminal.

• The ergodic capacity of such relay network over Rayleigh-Rician channels has
been derived in closed form. The results have been validated by comparison
with the numerical simulation.

• Considering that the LoS component of the Rician channel is not full rank,
the unordered eigenvalue distribution of the cascaded relay channel has been
given and the corresponding ergodic capacity has been also derived.

6.2 Future Work

Future research directions include the analysis of the two-way relay networks with
multiple-antenna implemented in each terminal.

The first extension is to consider the MRT analysis in hop-by-hop MIMO relay
networks [61]. When CSI is perfectly known at the transmission and at the receiver,
MRT is a scheme that is particularly robust against the severe effects of fading.
In MRT, the signal is transmitted along the strongest eigenmode and the received
signals are combined using maximal ratio combining. When CSI is only known to
the transmitter and the receiver, the outage probability, bit error rate (BER), and
the ergodic capacity have been derived in closed form in [62], considering that the
dual-hop channels undergo Rayleigh fading and Rician fading. When the relay as
well as two terminals are able to obtain the CSI of the two channels, both source
and relay could perform beamforming, and the network performance is analyzed in
[63]. However, in [63], both dual-hop channels are considered as Rayleigh fading.
This assumption intrigues us to explore the network performance of hop-by-hop
beamforming relay networks over asymmetric channels. Moreover, similar to [63],
we could take into account the effect of imperfect CSI on the network performance.

The second extension is to consider the scenario where multiple destinations exist
in relay networks. With multiple users behaving as the destination nodes and CSI
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of the second channels is available at relay, opportunistic scheduling is a technique
to select a single destination with the highest instantaneous SNR in the second hop
channel. In order to maximize the instantaneous SNR, MRT is employed in each
terminal. In the literature, [64] exploits the impact of opportunistic scheduling in
such networks, considering the antenna selection scheme. In [65], outage probability
and average symbol error rate (SER) are analyzed in interference-limited regime,
considering single antenna at relay and multiple antennas at source and destinations.
The limitation of the existing work is the lack of analysis on the impact of multiple
antenna employed at the relay, taking into account opportunistic scheduling, MRT,
and imperfect CSI. An interesting research line is therefore the study of the network
performance under aforementioned network models, with the help of finite RMT.
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Chapter 7

Acronyms

AF Amplify-and-Forward.

AWGN Additive White Gaussian Noise.

BER Bit Error Rate.

b/s/Hz Bits per Second per Hertz.

cdf Cumulative Distribution Function.

CSI Channel State Information.

DF Decode-and-Forward.

i.i.d. Independent and Identically Distributed.

LMS Land Mobile Satellite.

LoS Line of Sight.

MIMO Multiple Input and Multiple Output.

MISO Multiple Input and Single Output.

MMSE Minimum Mean Squared Error.

MRC Maximum Ratio Combining.

MRT Maximum Ratio Transmission.

pdf Probability Density Function.

RMT Random Matrix Theory.

SINR Signal to Interference-Plus-Noise Ratio.

SIMO Single Input and Multiple Output.

SISO Single Input and Single Output.

SNR Signal to Noise Ratio.

STC Space Time Codes.

SVD Singular Value Decomposition.
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7 – Acronyms

VBLAST Vertical Bell Laboratories Layered Space Time.

WLAN Wireless Local Area Network.
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Appendix A

Appendix

A.1 Proof of Theorem 1

Let H1 and H2 be, respectively, an m× n and an m× p (m ≤ p) Gaussian complex
random matrix whose columns are independent, have zero mean, and covariance Θ1

and Θ2, respectively.

• For m ≤ n, the distribution of the ordered eigenvalues of
(H2H2

H)−1/2H1H1
H(H2H2

H)−1/2 is given by [29, eq. (98)]

p(Λ) =
π2
mV(Λ)|Λ|n−m|{1F0(p+ n−m+ 1; ;−λj

ωi
)}|

(p+n−m)!−mΓm(p)Γm(n)|Ω|nV(−Ω−1)
(A.1)

where Ω = Θ1Θ
−1
2 , and ω1, . . . ,ωm are the eigenvalues of Ω. When Θ1 and

Θ2 are scalar matrices, and Ω = Θ1Θ
−1
2 = ωI, the distribution of Λ can be

obtained first by applying the limit (2.7) to (A.1):

p(Λ) =
π2
m(p+ n−m)!m

Γm(p)Γm(n)

V(Λ)|Λ|n−m

ωmn

· lim
Ω→ωI

|{1F0(p+ n−m+ 1; ;−λj/ωi)}|
V(−Ω−1)

=
π2
mΓm(p+n)V(Λ)|Λ|n−m

Γm(m)Γm(p)Γm(n)ωmn

·|{λm−ij 1F0(p+ n− j + 1; ;−λj/ω)}| (A.2)
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and then by observing that

|{λm−ij 1F0(p+ n− i+ 1; ;−λj/ω)}|
= |{λm−ij (1 + λj/ω)−(p+n−i+1)}|
= |{[λj/(1 + λj/ω)]m−i(1 + λj/ω)−(p+n−m+1)}|
= V(Λ(I + Λ/ω))|I + Λ/ω|−(p+n−m+1)

= V(Λ)|I + Λ/ω|1−m|I + Λ/ω|−(p+n−m+1)

= V(Λ)|I + Λ/ω|−(p+n) . (A.3)

• Form > n, the distribution of the n×n random matrix W = H1
H(H2H2

H)−1H1

is given by [66, eq. (61)]

p(W) =
Γm(n+ p)1F0(p+n; ; I−Ω−1,W(I+W)−1)

Γm(p)Γn(m)|Ω|n|W|n−m|I + W|p+n
(A.4)

where Ω = Θ
1/2
1 Θ−1

2 Θ
1/2
1 is of size m×m. Note that, for any unitary matrix

V independent of W, we have |VWVH| = |W|, |I + VWVH| = |I + W|.
Moreover, the eigenvalues of VWVH(I + VWVH)−1 are the same as those
of W(I + W)−1. Thus, p(VWV) = p(W). It follows that W is unitarily
invariant.

Let Ψ = W(I + W)−1 and the eigenvalues of W be λ1, . . . ,λn. Then, Ψ
has eigenvalues ψj = λj/(1 + λj), for j = 1, . . . ,n. In order to compute the
hypergeometric function of two matrix arguments of different size appearing
in (A.4), we extend Ψ to the m×m matrix Ψ̃ given by

Ψ̃ =

[
Ψ 0
0 E

]
where E is an (m−n)×(m−n) matrix whose eigenvalues are e = [e1, . . . ,em−n]T.

Then the eigenvalues of Ψ̃ are ψ̃ = [ψ1, . . . ,ψn,e1, . . . ,em−n]T. It follows that

1F0(p+ n; ; I−Ω−1,Ψ)

= lim
e→0

1F0(p+ n; ; I−Ω−1,Ψ̃)

(a)
= lim

e→0

Γm(m)(p+ n−m)!m

Γm(p+ n)

|{fi(ψ̃j)}|
V(I−Ω−1)V(Ψ̃)

=
Γm(m)(p+ n−m)!m

Γm(p+ n)V(I−Ω−1)
lim
e→0

|{fi(ψ̃j)}|
V(Ψ̃)

(A.5)
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where in (a) we applied (2.18) and fi(ψ̃j) = 1F0(p+ n−m+ 1; ; (1− ω−1i )ψ̃j),
i,j = 1, . . . ,m. By applying the limit in (2.7) and the properties in (??)
and (2.20), the limit in (A.5) can be computed as

lim
e→0

|{fi(ψ̃j)}|
V(Ψ̃)

=
Γm(p+ n)Γn(m)

Γn(p+ n)Γm(m)

(p+ n−m)!n−m|F|
|Ψ|m−nV(Ψ)

(A.6)

where for i = 1, . . . ,m

(F)ij=

{
fi(ψj), j = 1, . . . ,n
(1− ω−1i )m−j j = n+ 1,. . .,m

We now write the eigenvalue decomposition of W as W = UΛUH, where
(λ1, . . . ,λn) = diag(Λ). We then observe that |W| = |Λ|, |I + W| = |I +
Λ|, |Ψ| = |Λ||I + Λ|−1, and that V(Ψ) = V(Λ)|I + Λ|1−n. Therefore, by
using (A.4), (A.5), and (A.6), the pdf of W can be rewritten as

p(W) =
Γm(p+ n)(p+ n−m)!n

Γn(p+ n)Γm(p)

|I + Λ|m−p−n−1|F|
|Ω|nV(I−Ω−1)V(Λ)

. (A.7)

The pdf of the ordered eigenvalues of a complex random n × n matrix W is
given by [29, eq. (93)]:

p(Λ) =
π2
nV(Λ)2

Γn(n)

∫
pW(UΛUH) dU .

In our case, since p(UΛUH) does not depend on U, we obtain (2.35).

A.2 Proof of Theorem 2

• Form ≤ n, let us define W2 = H2H2
H. Then the matrix W = W

−1/2
2 H1H1

HW
−1/2
2

can be rewritten as W = HHH where H = W
−1/2
2 H1. For any given matrix

W2, for Θ = θI and MMH = µI, H is a Gaussian complex matrix with aver-
age M̃ = W

−1/2
2 M and independent columns whose covariance is Σ = θW−1

2 .
It follows that, given W2, W is a non central Wishart matrix and p(W|W2)
is given by [29, eq. (99)]

pW|W2(W|W2) = 0F1(;n; Σ−1M̃M̃HΣ−1W)

· e−Tr{Σ
−1W}|W|n−m

eTr{Σ−1M̃M̃H}Γm(n)|Σ|n

= 0F1(;n; θ−2µW2W)

· e−Tr{θ
−1W2W}|W2|n

eµm/θθnmΓm(n)|W|m−n
. (A.8)
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On the other hand, W2 is a central Wishart with covariance θI. Thus, the
density of W can be written as

pW(W) =

∫
pW|W2(W|W2)pW2(W2) dW2

=

∫
0F1(;n;

µ

θ2
W2W)

· e
−Tr{W2(I+W)/θ}|W2|p+n−m dW2

eµm/θθ(p+n)mΓm(n)Γm(p)|W|m−n

=
|W|n−m

eµm/θθ(p+n)mΓm(n)Γm(p)

·
∫

0F1(;n; µ
θ2

W2W) dW2

eTr{W2(I+W)/θ}|W2|m−p−n
. (A.9)

In order to solve the above integral, we employ the following result∫
B=BH>0

pFq(a; b; CB)

|B|m−ceTr{AB} dB =
p+1Fq(a,c; b; CA−1)

[Γm(c)]−1|A|c
,

which holds for m ×m matrices A,B, and C, and for R(c) > m − 1 [67, eq.
(115)]. Then,

pW(W) =
Γm(p+ n)1F1(p+ n;n; µ

θ
W(I + W)−1)

Γm(n)Γm(p)eµm/θ|W|m−n|I + W|p+n
.

It can be observed that p(W) depends only on the eigenvalues of W, thus it
is unitarily invariant. It follows that the pdf of the ordered eigenvalues of W
is given by [29, eq. (93)]

p(Λ) =
π2
mV(Λ)2

Γm(m)

∫
pW(UΛUH) dU ,

which provides the results in (2.36).

• For m > n, the distribution of the n × n matrix W = H1
H(H2H2

H)−1H1 is
given by [29, eq. (105)]

p(W) =
Γn(p+ n)1F1(p+ n;m; Ω(I + W−1)−1)

Γn(m)Γn(p+ n−m)eTr{Ω}|W|n−m|I + W|p+n
(A.10)

and the distribution of its eigenvalues is given by

p(Λ) =
p!n

(m− n)!n
πne−Tr{Ω}V(Λ)|F||Λ|m−n

Γn(p+ n−m)V(Ω)|I + Λ|1+p
(A.11)
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where Ω = MHΘ−1M, (F)ij = 1F1(p + 1;m − n + 1;λjωi/(1 + λj)), and
ω1, . . . ,ωn are the eigenvalues of Ω. This result has been obtained by apply-
ing (2.18) to [29, eq. (106)].

In the particular case where Ω is a scalar matrix (i.e., Ω = ωI), matrix W is
unitarily invariant since its pdf in (A.10) only depends on its eigenvalues Λ.
Indeed, |W| = |Λ|, |I + W| = |I + Λ|, and the generalized hypergeometric
function 1F1(p + n;m;ω(I + W−1)−1) only depends on the eigenvalues of its
matrix argument, i.e., on Λ. In such a case, the distribution of Λ can be
obtained from (A.11) by applying the limit in (2.9) to the ratio |F|/V(Ω) and
the property in (2.20). The result is reported in (2.37).

A.3 Proof of Theorem3

The proof of (2.38) and (2.40) follows from the application of [68, Theorem I]
to (2.32) and (2.33), respectively.

The density given in (2.33) is an ordered eigenvalue distribution and the un-
ordered eigenvalue distribution is obtained by dividing (2.33) by n!. Then, applying
the Laplace determinant expansion, the unordered eigenvalues distribution becomes

p(Λ) =
π2
nΓn(p+ q)(1− λ1)q−nλp−n−21

n!Γn(n)Γn(p)Γn(q)

·
n∑
i=1

n∑
j=1

(−λ1)i+j

·
n∏
k=2

(1− λk)q−nλq−nk |V̄(Λ)||Ṽ(Λ)| (A.12)

where V̄(Λ) and Ṽ(Λ) are (n− 1)× (n− 1) matrices obtained by deleting the first
row and column from the Vandermonde matrix V(Λ) and its conjugate transpose,
separately. The (i,j)-th entry of V(Λ) and its conjugate transpose are λj−1i and
λi−1j , respectively. Thanks to [69, Corollary 1], the result in (2.40) can be obtained
through integration over n− 1 eigenvalues from λ2 to λn. The final expressions are
in both cases due to the definition of the scalar Beta function [32]. It should be
noticed that the choice of λ1 in (A.12) has no effect on the final result, since we
started from an unordered eigenvalue distribution. Using the same approach, the
proof of (2.38) is straightforward.
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A.4 Proof of (3.2) and (3.4)

We first observe that for m > n the matrix HHH does not have full rank and has
m− n zero eigenvalues. The n non-zero eigenvalues of HHH, denoted by λ1, . . . ,λn,
are also the eigenvalues of HHH and are the elements of the n× n diagonal matrix
Λ. We start by rewriting [35, eq. (38)] in the case m > n and obtain

p(Y) =

∫
e−‖Y‖

2
p(Λ)

πmb|I + γΛ|b

[∫
eTr{C̃UHYYHU}p(U|Λ) dU

]
dΛ (A.13)

where U is a unitarym×mmatrix, C̃ is anm×m diagonal matrix whose elements are
given by (C̃)jj = cj = λjγ/(1 + γλj), j = 1, . . . ,m, with cj = 0, for j = n+ 1, . . . ,m.
Since we assume that W = HHH is unitarily invariant, its eigenvalues do not depend
on U. Moreover, U is a Haar matrix. Then, p(U|Λ) = p(U). The inner integral
over U can be solved using the Harish-Chandra-Itzykson-Zuber integral [70]∫

U(m)

eTr{C̃UHYYHU}p(U) dU =
Γm(m)|E|

πmV(C̃)V(YYH)
.

The elements of matrix E are given by (E)ij = eyicj , i,j = 1, . . . ,m and yi, i =
1, . . . ,m, are the eigenvalues of YYH. Due to the fact that cj = 0 for j = n+1, . . . ,m,

we have |E| = 0 and V(C̃) = 0; thus the limit in (2.7) must be applied to the term

|E|/V(C̃). We have

lim
cn+1,...,cm→0

|E|
V(C̃)

=
πmΓn(m)

πnΓm(m)

|Ẽ|
V(C)|C|m−n

(A.14)

where Ẽ is an m×m matrix whose elements are given by (Ẽ)ij = eyicj for 1 ≤ j ≤ n,

and (Ẽ)ij = yj−n−1i for n + 1 ≤ j ≤ m. Also, C is an n× n diagonal matrix whose
elements are (C)jj = cj = λjγ/(1 + γλj), j = 1, . . . ,n. Therefore, (A.13) can be
rewritten as

p(Y) =
Γn(m)K(Y)

πn

∫
p(Λ)|Ẽ|
|I + γΛ|b

|C|n−m

V(C)
dΛ (A.15)

where K(Y) = e−‖Y‖
2
/(V(YYH)πmb) was defined in (3.3). Since cj = λjγ/(1+γλj),

by applying the definition of the Vandermonde determinant, we get V(C) = |I +
γΛ|1−nV(γΛ). Moreover, |C| = |γΛ||I + γΛ|−1. By substituting these results
in (A.15), we obtain (3.4).

A.5 Proof of Proposition 1

We first observe that the matrix H in (3.7) can be written as H = H0/
√

1 + κ,

where H0 =
√
κH̄ + H̃.
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• For m ≤ n and H̄H̄H = hI, the joint distribution of the ordered eigenvalues of
H0H0

H is given by (2.28) where µ = κh, i.e.,

p0(Λ0) =
π2
m|Λ0|nV(Λ0)|{λ−i0j 0F1( ;n− i+ 1;κhλ0j)}|

Γm(m)Γm(n)eκhm+Tr{Λ0}

where (λ01, . . . ,λ0m) = diag(Λ0). Then, the pdf of the ordered eigenvalues of
HHH is given by

p(Λ) = (1 + κ)mp0((1 + κ)Λ)

=
π2
m(1 + κ)mn|Λ|n|F|V(Λ)

Γm(m)Γm(n)eκhm+(1+κ)Tr{Λ} (A.16)

where (F)ij = λ−ij 0F1( ;n − i + 1;κ(1 + κ)hλj), i,j = 1, . . . ,m. By substitut-
ing this equation in (3.2) and by applying the result in Appendix A.11, we
obtain (3.8).

• For m > n, and for H̄HH̄ = hI, we adopt a procedure similar to the one above.
In this case, the pdf of the non-zero eigenvalues of HHH is given by (A.16)
where n and m should be replaced by m and n, respectively. By substituting
p(Λ) in (3.4) and by applying the result in Appendix A.11, we obtain (3.9).

A.6 Proof of Proposition 2

For m ≤ n, the distribution of the ordered eigenvalues of HHH is expressed as [42,
eq. (9)]

p(Λ) =
Γ(α−m+ 1)m

Γ(n−m+ 1)m
πme−Tr{Λ}

V((I + Ω)−1)

V(Λ)|Λ|n−m|F|
Γm(α)|I + Ω−1|α

(A.17)

with (F)ij = 1F1(α−m+ 1;n−m+ 1;λj/(1 + ωi)). When Ω = ωI, the expression
of p(Λ) can be derived from (A.17) by applying the limit in (2.9) and by using the
property in (??). For simplicity, we define Θ = (I+Ω)−1 = θI where θ = (1 +ω)−1.
Then,

p(Λ) =
πmΓ(α−m+ 1)mV(Λ)|Λ|n−m

Γm(α)Γ(n−m+ 1)meTr{Λ}(1 + 1/ω)mα

· lim
Θ→θI

|F|
V(Θ)

=
π2
mV(Λ)|Λ|n|F̃|

Γm(m)Γm(n)eTr{Λ}(1 + 1/ω)mα

(A.18)
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where (F̃)ij = λ−ij 1F1(α− i+1;n− i+1;λj/(1+ω)), i,j = 1, . . . ,m. The proposition
statement follows by replacing (A.18) in (3.2). Similarly, when m > n and Ω = ωI,
the distribution of the eigenvalues of HHH is given by

p(Λ) =
π2
ne−Tr{Λ}V(Λ)|Λ|m

Γn(m)(1 + 1/ω)nα
|F̃|

Γn(n)

where (F̃)ij = λ−ij 1F1(α − i + 1;m − i + 1;λj/(1 + ω)), i,j = 1, . . . ,n. Again, the
proposition statement is obtained by replacing the above equation in (3.4).

A.7 Proof of Proposition 4

We first observe that the matrix H in (3.13) can be written as H = H0/
√

1 + κ,
where

H0 =
√
κ
(
ĤĤH

)−1/2
H̄s +

(
ĤĤH

)−1/2
H̃s

• for m ≤ n, and H̄sH̄s
H = hI, the distribution of the ordered eigenvalues of

H0H0
H is given by (2.36)

p0(Λ0) =
π2
me−hκm/θΓm(Ln+ n)V(Λ0)

2|Λ0|n−m

Γm(m)Γm(n)Γm(Ln)|I + Λ0|Ln+n

·1F1

(
Ln+ n;n;

hκ

θ
Λ0(I + Λ0)

−1
)

where we set µ = hκ. The distribution of the eigenvalues of HHH can then be
obtained as

p(Λ) = κ̃mp0(κ̃Λ)

=
π2
mκ̃

mnΓm(Ln+ n)|Λ|n−mV2(Λ)

Γm(m)Γm(n)Γm(Ln)ehκm/θ|I + κ̃Λ|Ln+n

· 1F1

(
Ln+ n;n;

hκκ̃

θ
Λ(I + κ̃Λ)−1

)
(A.19)

where κ̃ = 1 + κ. By substituting the above expression in (3.2), and by
exploiting the property [30, eq. (2.36)]

1F1(a; b; Ψ) =
|{1F1(a−m+ j; b−m+ j;ψi)ψ

j−1
i }|

V(Ψ)
,

which holds for any m×m Hermitian matrix Ψ with eigenvalues ψ1, . . . ,ψm,
we obtain (3.17).
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• For m > n, the distribution of the eigenvalues of H0H0
H is given by (2.37):

p0(Λ0) =
π2
nΓn(Ln+ n)e−ωn|F||Λ0|m−nV(Λ0)

Γn(n)Γn(m)Γn(Ln+ n−m)|I + Λ0|Ln+1

where Ω = ωI = MHΘ−1M. In our case we have M =
√
κH̄s, thus ωI =

κH̄s
HΘ−1H̄s. It follows that the matrix HHH is unitarily invariant if H̄s

HΘ−1H̄s =
ω/κI. The distribution of the eigenvalues of HHH can then be obtained as

p(Λ) = κ̃np0(κ̃Λ)

=
π2
nΓn(Ln+ n)|Λ|m−nV(Λ)

Γn(n)Γn(m)Γn(Ln+ n−m)

·
|{λ̃n−ij 1F1(Ln+ n− i+ 1;m− i+ 1;ωκ̃λ̃j)}|

κ̃−nmeωn|I + κ̃Λ|Ln+1

where κ̃ = 1 + κ and λ̃j = λj/(1 + κ̃λj). By substituting this expression
in (3.4), we obtain (3.19).

A.8 Proof of Proposition 4

Given the above assumptions and considering that X =
√
cD1/2Φ, p(Y|D) is given

in as [2, eq. (53)]:

p(Y|D) =
e−‖Y‖

2
A

πmb|I + γcD|m
(A.20)

where

A =

∫
S(b,n)

eTr{∆ΦYHYΦH}p(Φ) dΦ

=
1

|S(b,n)|

∫
S(b,n)

eTr{∆ΦYHYΦH} dΦ

and ∆ = γcD(I+γcD)−1. In [2, Appendix A], it is observed that the integral above
is not an instance of the Harish-Chandra-Itzykson-Zuber (HCIZ) integral [70] since
the n× b matrix Φ is not a square matrix. In order to circumvent this problem, one
has to extend matrix ΦH to the unitary b × b Haar matrix Φ̃H = [ΦH,Φ⊥

H], where
Φ⊥

H is the orthogonal complement of ΦH with respect to the unitary group U(b).
Thus, following [2, Appendix A], we can write

A =
1

|S(b,n)||U(b− n)|

∫
U(b)

eTr{∆ΦYHYΦH} dΦ̃ .
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Next, the n× n diagonal matrix ∆ = diag(δ1, . . . ,δn) can be extended to the b× b
matrix ∆̃ = diag(δ1, . . . ,δn,q1, . . . ,qb−n) where the elements of q = [q1, . . . ,qb−n] are
distinct and different from δ1, . . . ,δn. The above integral can then be written as

A =
1

|S(b,n)||U(b− n)|
lim
q→0

∫
U(b)

eTr{∆̃Φ̃YHYΦ̃H} dΦ̃ . (A.21)

We observe that the matrix YHY has b − m zero-eigenvalues, and its non-zero
eigenvalues are the eigenvalues of YYH. Since the HCIZ integral is a function of
the eigenvalues of the matrices ∆̃ and YHY, we replace the matrix YHY with the
b×b block diagonal matrix Ψ = diag(YYH,P) where P is diagonal and has diagonal
entries p = [p1, . . . ,pb−m]. Such elements are positive, distinct, and they are different
from the eigenvalues of YYH. In conclusion, we can write:

A =
1

|S(b,n)||U(b− n)|
lim
q→0

lim
p→0

∫
U(b)

eTr{∆̃Φ̃ΨΦ̃H} dΦ̃

=
Γb(b)|U(b)|

πb|S(b,n)||U(b− n)|
lim
q→0

lim
p→0

|F|
V(Ψ)V(∆̃)

=
Γb(b)

πb
lim
q→0

lim
p→0

|F|
V(Ψ)V(∆̃)

(A.22)

where (F)ij = eψiδ̃j and ψi and δ̃j are the eigenvalues of Ψ and ∆̃, respectively.
In (A.22) we first used the HCIZ integral [70] and then the equality |U(b)| =
|S(b,n)||U(b− n)|. Then, we apply twice the limit in (2.9) and obtain:

lim
q→0

lim
p→0

|F|
V(Ψ)V(∆̃)

=
πbΓm(b)|YYH|m−b

πmΓb(b)V(YYH)

·πbΓn(b)|F̂||∆|n−b

πnΓb(b)V(∆)
(A.23)

where for m ≤ n,

(F̂)ij =


eyiδj i = 1, . . . ,m; j = 1, . . . ,n

yb−ji i = 1, . . . ,m; j = n+ 1, . . . ,b
δb−ij i = m+ 1, . . . ,b,j = 1, . . . ,n
(b− i)! i = j; j = n+ 1, . . . ,b
0 elsewhere ,

(A.24)
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while for m > n,

(F̂)ij =


eyiδj i = 1, . . . ,m; j = 1, . . . ,n

yb−ji i = 1, . . . ,m; j = n+ 1, . . . ,b
δb−ij i = m+ 1, . . . ,b,j = 1, . . . ,n
(b− i)! i = j; j = m+ 1, . . . ,b
0 elsewhere.

(A.25)

In summary,

p(Y|D) =
πbΓm(b)Γn(b)K(Y)|YYH|m−b|F̂||∆|n−b

πmπnΓb(b)V(∆)|I + γcD|m
(A.26)

where K(Y) was defined in (3.3).

We now focus on the case m > n and compute the determinant |F̂|. Note that

F̂ can be written as

F̂ =

[
F̂1 F̂2

F̂3 F̂4

]

where F̂1 is of size m×m, F̂2 m× (b−m), F̂3 (b−m)×m, and F̂4 (b−m)× (b−m).
By using the property of the determinant of block matrices [71], we have:

|F̂| = |F̂4||T̂| ,

where T̂ = F̂1 − F̂2F̂
−1
4 F̂3. In our case, F̂4 is diagonal (see the definition of F̂

in (A.25)) and |F̂4| =
∏b−m−1

i=0 i!. Moreover, we have (F̂2F̂
−1
4 F̂3)ij =

∑b−m−1
k=0 (yiδj)

k/k!

for i = 1, . . . ,m, j = 1, . . . ,n, and (F̂2F̂
−1
4 F̂3)ij = 0 otherwise. It follows that for

i = 1, . . . ,m

(T̂)ij =

{
eyiδj −

∑b−m−1
k=0

(yiδj)
k

k!
j = 1, . . . ,n

yb−ji j = n+ 1, . . . ,m .
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Note that, for i = 1, . . . ,m and j = 1, . . . ,n,

(T̂)ij = eyiδj −
b−m−1∑
k=0

(yiδj)
k

k!

=
∞∑
k=0

(yiδj)
k

k!
−

b−m−1∑
k=0

(yiδj)
k

k!

=
∞∑

k=b−m

(yiδj)
k

k!

=
∞∑
h=0

(yiδj)
b−m+h

(b−m+ h)!

= (yiδj)
b−m

∞∑
h=0

(yiδj)
hh!

(b−m+ h)!h!

=
(yiδj)

b−m

(b−m)!

∞∑
h=0

(1)h(yiδj)
h

(b−m+ 1)hh!

=
(yiδj)

b−m

(b−m)!
1F1(1; b−m+ 1; yiδj)

since h! = (1)h and (b−m+ h)! = (b−m+ 1)h(b−m)!. Also, for i = 1, . . . ,m and

j = n+ 1, . . . ,m, (T̂)ij = yb−ji = yb−mi ym−ji .

As a consequence, the matrix T̂ can be rewritten as T̂ = LGR, where L and R
are diagonal m×m matrices given by, respectively, L = diag(yb−m1 , . . . ,yb−mm ), and

R = diag(δb−m1 /(b−m)!, . . . ,δb−mn /(b−m)!,1, . . . ,1) .

Furthermore, G is an m×m matrix whose elements, for i=1, . . . ,m, are given by

(G)ij =

{
1F1(1; b−m+ 1; yiδj) j = 1, . . . ,n

ym−ji j = n+ 1, . . . ,m .

Thus, we have:

|F̂| = |F̂4||T̂|

= |L||G||R|
b−m−1∏
i=0

i!

=
|YYH|b−m|G||∆|b−m

(b−m)!n

b−m−1∏
i=0

i! . (A.27)
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In conclusion, by substituting (A.27) in (A.26), we get (3.25).

For m ≤ n, a similar procedure can be used to compute the determinant |F̂|. In
this case,

|F̂| = |YYH|b−n|G||∆|b−n

(b− n)!m

b−n−1∏
i=0

i! .

Again, by substituting the above expression in (A.26), we get (3.24). Here, however,
the expression of (G)ij changes as follows:

(G)ij =

{
1F1(1; b− n+ 1; yiδj) i = 1, . . . ,m
δn−ij i = m+ 1, . . . ,n

and for j = 1, . . . ,n.

A.9 Proof of Proposition 6

The law of the output of a channel, as the one in (3.1), conditioned on the input
power allocation D, is reported in [2, eq. (58)], i.e.,

p(Y|D) =
Γn(b)K(Y)|I + cγD|b−m−1|F|

πnγn|γcD|b−nV(cD)
, (A.28)

where K(Y) = e−‖Y‖
2
/(πmbV(YYH)) and (F)ij = exp

(
cγyidj
1+cγdj

)
, i = 1, . . . ,n,j =

1, . . . ,b, and Fij = yb−ji , i = n+ 1, . . . ,b,j = 1, . . . ,b.

In order to take average of (A.28), we first write |F| as the product of two
determinants. Indeed, we partition F as

F =

[
F1 F2

F3 F4

]
(A.29)

where (F4)ij = yb−n−jn+i i,j = 1, . . . ,b− n, and F1 is the principle n× n submatrix of
F. Applying the property of the determinant of block matrices [71] to (A.29), we
obtain

|F| = |F4||T| , (A.30)

where T = F1−F2F
−1
4 F3. We notice that |F4| is independent of D, and the matrix
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T has the same size as D. For m > n, p(D) is given by (2.33). We then get

p(Y) =

∫
p(Y|D)p(D) dD

=
Γn(b)K(Y)|F4|

πnγn

∫
|I + cγD|b−m−1|T|p(D)

|γcD|b−nV(cD)
dD

=
πnΓn(b)Γn(m)(γc)n(n−b)K(Y)|F4|

γnΓn(n)cn(n−1)/2Γn(b− n)Γn(n+m− b)

·
∫
|I + cγD|b−m−1|T|
|I−D|b−m|D|n

V(D) dD ,

=
πnΓn(b)Γn(m)(γc)n(n−b)K(Y)|F4||Z|

γncn(n−1)/2Γn(n)Γn(b− n)Γn(n+m− b)
(A.31)

where

(Z)ij =

∫ 1

0

(1 + cγx)b−m−1xi−1−n

(1− x)b−m

·
[
exp

(
cγyix

1 + cγx

)
− (F2F

−1
4 F3)ij

]
has been obtained by using the result in Appendix A.11, and

(F2F
−1
4 F3)ij =

b−n∑
`,k=1

(F−14 )`k exp

(
cγxy`+n
1 + cγx

)
yb−k−nj .

A.10 Proof of Proposition 7

Conditioned on the input X, the output Y is complex Gaussian and has i.i.d. rows,
so that the evaluation of the differential entropy can be carried out by considering
just an arbitrary row, y, of Y and, then, scaling the result by m. We note that y
is multivariate Gaussian distributed with covariance equal to (I + γXHX). Thus,
considering the optimal input matrix, X =

√
cD1/2Φ and conditioning on it, the

differential entropy is given by:

h(y|X) = b log2(πe) + nE [log2 (1 + cγδ)] , (A.32)

with δ being distributed as a single unordered eigenvalue of the matrix D. By using
(2.33) and considering p = b− n and q = m+ n− b, p(D) reads as

p(D) =
π2
nΓn(m)|I−D|m−b|D|b−2nV2(D)

Γn(n)Γn(b− n)Γn(m+ n− b)
. (A.33)
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By exploiting the result given in Proposition 3 and by denoting the constant terms
in the above expression by K, we obtain:

p(δ) =
K

n

n∑
i,j=1

δ(b−2n+i+j−2)(1− δ)(m−b)aij (A.34)

with aij being defined as in the above proposition. The integral in (A.32) can
be solved by resorting to partial integration. Indeed, taking log2 (1 + cγδ) as the
primitive factor and recalling that (1 − δ)n−m =

∑n−m
`=0

(
n−m
`

)
(−1)`δ`, by virtue of

[72, 3.194.1], we obtain

E [log2 (1 + γδ)] =
K

n

n∑
i,j=1

aij

m−b∑
`=0

(
m− b
`

)
(−1)`

si,j,` − 1

·
[
log2(1 + cγ)− cγ 2F1 (1,si,j,`; si,j,` + 1;−γ)

ln(2)(si,j,`)

]
where si,j,` = b− 2n+ i+ j+ `. Then, using this expression in (A.32), we get (3.30).

A.11 Lemma 2 in [1]

Consider a function ξ(x), an arbitrary n× n matrix Φ(x) such that (Φ)ij = φi(xj),
and an arbitrary m×m matrix Ψ, m ≥ n, whose elements are given by

(Ψ)ij =

{
ψi(xj) 1 ≤ i ≤ m,1 ≤ j ≤ n
cij 1 ≤ i ≤ m,n+ 1 ≤ j ≤ m

where cij are constant. Then, the following identity holds:∫
[a,b]n
|Φ(x)||Ψ(x)|

n∏
k=1

ξ(xk) dx = n!|Ξ| (A.35)

where, for 1 ≤ i ≤ m,

(Ξ)ij =

{ ∫ b
a
ψi(x)φj(x)ξ(x) dx 1 ≤ j ≤ n

cij n+ 1 ≤ j ≤ m.

For the specific case m = n, this result appears in [69, Corollary II].
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1. S. Zhou, G. Alfano, A. Nordio, and C. F. Chiasserini, “Ergodic capacity anal-
ysis of MIMO relay network over Rayleigh-Rician channels,” IEEE Commu-
nications Letters, to appear, 2015.

2. G. Alfano, C. F. Chiasserini, A. Nordio and S. Zhou, “Closed-form output
statistics of MIMO block-fading channels,” IEEE Transaction on Information
Theory, Vol. 60, No. 12, pp. 7782-7797, Nov. 2014.

3. S. Zhou, A. Nordio and C. F. Chiasserini, “Estimation quality of high-dimensional
fields in wireless sensor networks,” The Sixth International Conference on
Advances in Satellite and Space Communications (SPACOMM 2014), Nice,
France, 2014.

4. F. Malandrino, C. Casetti, C. F. Chiasserini, S. Zhou, “Real-time scheduling
for content broadcasting in LTE,” IEEE International Symposium on Mod-
eling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS 2014), Paris, France, 2014.

5. S. Zhou, G. Alfano, C. F. Chiasserini and A. Nordio, “Characterization of out-
put signals for MIMO block-fading channels with imperfect CSI,” IEEE In-
ternational Symposium on Wireless Communication Systems (ISWCS 2013),
Ilmenau, Germany, 2013.

6. G. Alfano, C. F. Chiasserini, A. Nordio and S. Zhou, “Output statistics of
MIMO channels with general input distribution,” IEEE International Sympo-
sium on Information Theory Proceedings (ISIT 2013), Istanbul, Turkey, 2013.
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