1,844 research outputs found

    On the equivalence between MV-algebras and ll-groups with strong unit

    Full text link
    In "A new proof of the completeness of the Lukasiewicz axioms"} (Transactions of the American Mathematical Society, 88) C.C. Chang proved that any totally ordered MVMV-algebra AA was isomorphic to the segment AΓ(A,u)A \cong \Gamma(A^*, u) of a totally ordered ll-group with strong unit AA^*. This was done by the simple intuitive idea of putting denumerable copies of AA on top of each other (indexed by the integers). Moreover, he also show that any such group GG can be recovered from its segment since GΓ(G,u)G \cong \Gamma(G, u)^*, establishing an equivalence of categories. In "Interpretation of AF CC^*-algebras in Lukasiewicz sentential calculus" (J. Funct. Anal. Vol. 65) D. Mundici extended this result to arbitrary MVMV-algebras and ll-groups with strong unit. He takes the representation of AA as a sub-direct product of chains AiA_i, and observes that AiGiA \overset {} {\hookrightarrow} \prod_i G_i where Gi=AiG_i = A_i^*. Then he let AA^* be the ll-subgroup generated by AA inside iGi\prod_i G_i. He proves that this idea works, and establish an equivalence of categories in a rather elaborate way by means of his concept of good sequences and its complicated arithmetics. In this note, essentially self-contained except for Chang's result, we give a simple proof of this equivalence taking advantage directly of the arithmetics of the the product ll-group iGi\prod_i G_i, avoiding entirely the notion of good sequence.Comment: 6 page

    Lattice-ordered abelian groups and perfect MV-algebras: a topos-theoretic perspective

    Full text link
    We establish, generalizing Di Nola and Lettieri's categorical equivalence, a Morita-equivalence between the theory of lattice-ordered abelian groups and that of perfect MV-algebras. Further, after observing that the two theories are not bi-interpretable in the classical sense, we identify, by considering appropriate topos-theoretic invariants on their common classifying topos, three levels of bi-intepretability holding for particular classes of formulas: irreducible formulas, geometric sentences and imaginaries. Lastly, by investigating the classifying topos of the theory of perfect MV-algebras, we obtain various results on its syntax and semantics also in relation to the cartesian theory of the variety generated by Chang's MV-algebra, including a concrete representation for the finitely presentable models of the latter theory as finite products of finitely presentable perfect MV-algebras. Among the results established on the way, we mention a Morita-equivalence between the theory of lattice-ordered abelian groups and that of cancellative lattice-ordered abelian monoids with bottom element.Comment: 54 page

    Notes on divisible MV-algebras

    Full text link
    In these notes we study the class of divisible MV-algebras inside the algebraic hierarchy of MV-algebras with product. We connect divisible MV-algebras with Q\mathbb Q-vector lattices, we present the divisible hull as a categorical adjunction and we prove a duality between finitely presented algebras and rational polyhedra

    Representation of Perfect and Local MV-algebras

    Full text link
    We describe representation theorems for local and perfect MV-algebras in terms of ultraproducts involving the unit interval [0,1]. Furthermore, we give a representation of local Abelian lattice-ordered groups with strong unit as quasi-constant functions on an ultraproduct of the reals. All the above theorems are proved to have a uniform version, depending only on the cardinality of the algebra to be embedded, as well as a definable construction in ZFC. The paper contains both known and new results and provides a complete overview of representation theorems for such classes

    Semiring and semimodule issues in MV-algebras

    Full text link
    In this paper we propose a semiring-theoretic approach to MV-algebras based on the connection between such algebras and idempotent semirings - such an approach naturally imposing the introduction and study of a suitable corresponding class of semimodules, called MV-semimodules. We present several results addressed toward a semiring theory for MV-algebras. In particular we show a representation of MV-algebras as a subsemiring of the endomorphism semiring of a semilattice, the construction of the Grothendieck group of a semiring and its functorial nature, and the effect of Mundici categorical equivalence between MV-algebras and lattice-ordered Abelian groups with a distinguished strong order unit upon the relationship between MV-semimodules and semimodules over idempotent semifields.Comment: This version contains some corrections to some results at the end of Section

    Lukasiewicz logic and Riesz spaces

    Full text link
    We initiate a deep study of {\em Riesz MV-algebras} which are MV-algebras endowed with a scalar multiplication with scalars from [0,1][0,1]. Extending Mundici's equivalence between MV-algebras and \ell-groups, we prove that Riesz MV-algebras are categorically equivalent with unit intervals in Riesz spaces with strong unit. Moreover, the subclass of norm-complete Riesz MV-algebras is equivalent with the class of commutative unital C^*-algebras. The propositional calculus RL{\mathbb R}{\cal L} that has Riesz MV-algebras as models is a conservative extension of \L ukasiewicz \infty-valued propositional calculus and it is complete with respect to evaluations in the standard model [0,1][0,1]. We prove a normal form theorem for this logic, extending McNaughton theorem for \L ukasiewicz logic. We define the notions of quasi-linear combination and quasi-linear span for formulas in RL{\mathbb R}{\cal L} and we relate them with the analogue of de Finetti's coherence criterion for RL{\mathbb R}{\cal L}.Comment: To appear in Soft Computin
    corecore