719 research outputs found

    On the Entropy of a Two Step Random Fibonacci Substitution

    Get PDF
    Nilsson J. On the Entropy of a Two Step Random Fibonacci Substitution. Entropy. 2013;15(9):3312-3324.We consider a random generalization of the classical Fibonacci substitution. The substitution we consider is defined as the rule mapping, a → baa and b → ab, with probability , and → ba, with probability 1 – p for 0 < p < 1, and where the random rule is applied each time it acts on a . We show that the topological entropy of this object is given by the growth rate of the set of inflated random Fibonacci words, and we exactly calculate its value

    On the Entropy of a Family of Random Substitutions

    Full text link
    The generalised random Fibonacci chain is a stochastic extension of the classical Fibonacci substitution and is defined as the rule mapping 0↦10\mapsto 1 and 1↦1i01m−i1 \mapsto 1^i01^{m-i} with probability pip_i, where pi≥0p_i\geq 0 with ∑i=0mpi=1\sum_{i=0}^m p_i=1, and where the random rule is applied each time it acts on a 1. We show that the topological entropy of this object is given by the growth rate of the set of inflated generalised random Fibonacci words.Comment: A more appropriate tile and minor misprints corrected, compared to the previous versio

    Entanglement entropy in aperiodic singlet phases

    Full text link
    We study the average entanglement entropy of blocks of contiguous spins in aperiodic XXZ chains which possess an aperiodic singlet phase at least in a certain limit of the coupling ratios. In this phase, where the ground state constructed by a real space renormalization group method, consists (asymptotically) of independent singlet pairs, the average entanglement entropy is found to be a piecewise linear function of the block size. The enveloping curve of this function is growing logarithmically with the block size, with an effective central charge in front of the logarithm which is characteristic for the underlying aperiodic sequence. The aperiodic sequence producing the largest effective central charge is identified, and the latter is found to exceed the central charge of the corresponding homogeneous model. For marginal aperiodic modulations, numerical investigations performed for the XX model show a logarithmic dependence, as well, with an effective central charge varying continuously with the coupling ratio.Comment: 18 pages, 9 figure

    Energy spectra of quasiperiodic systems via information entropy

    Get PDF
    We study the relationship between the electronic spectrum structure and the configurational order of one-dimensional quasiperiodic systems. We take the Fibonacci case as an specific example, but the ideas outlined here may be useful to accurately describe the energy spectra of general quasiperiodic systems of technological interest. Our main result concerns the {\em minimization} of the information entropy as a characteristic feature associated to quasiperiodic arrangements. This feature is shown to be related to the ability of quasiperiodic systems to encode more information, in the Shannon sense, than periodic ones. In the conclusion we comment on interesting implications of these results on further developments on the issue of quasiperiodic order.Comment: REVTeX 3.0, 8 pages, 3 figures available on request from FD-A ([email protected]), Phys Rev E submitted, MA/UC3M/02/9

    Many-body localization in a quasiperiodic Fibonacci chain

    Full text link
    We study the many-body localization (MBL) properties of a chain of interacting fermions subject to a quasiperiodic potential such that the non-interacting chain is always delocalized and displays multifractality. Contrary to naive expectations, adding interactions in this systems does not enhance delocalization, and a MBL transition is observed. Due to the local properties of the quasiperiodic potential, the MBL phase presents specific features, such as additional peaks in the density distribution. We furthermore investigate the fate of multifractality in the ergodic phase for low potential values. Our analysis is based on exact numerical studies of eigenstates and dynamical properties after a quench
    • …
    corecore