2,560 research outputs found

    On the energy efficiency-spectral efficiency trade-off over the MIMO rayleigh fading channel

    Get PDF
    Along with spectral efficiency (SE), energy efficiency (EE) is becoming one of the key performance evaluation criteria for communication system. These two criteria, which are conflicting, can be linked through their trade-off. The EE-SE trade-off for the multi-input multi-output (MIMO) Rayleigh fading channel has been accurately approximated in the past but only in the low-SE regime. In this paper, we propose a novel and more generic closed-form approximation of this trade-off which exhibits a greater accuracy for a wider range of SE values and antenna configurations. Our expression has been here utilized for assessing analytically the EE gain of MIMO over single-input single-output (SISO) system for two different types of power consumption models (PCMs): the theoretical PCM, where only the transmit power is considered as consumed power; and a more realistic PCM accounting for the fixed consumed power and amplifier inefficiency. Our analysis unfolds the large mismatch between theoretical and practical MIMO vs. SISO EE gains; the EE gain increases both with the SE and the number of antennas in theory, which indicates that MIMO is a promising EE enabler; whereas it remains small and decreases with the number of transmit antennas when a realistic PCM is considered

    An Accurate Closed-Form Approximation of the Energy Efficiency-Spectral Efficiency Trade-Off over the MIMO Rayleigh Fading Channel

    Get PDF
    Energy efficiency (EE) is gradually becoming one of the key criteria, along with the spectral efficiency (SE), for evaluating communication system performances. However, minimizing the energy-per-bit consumption while maximizing the SE are conflicting objectives and, thus, the main criterion for designing efficient communication systems will become the trade-off between SE and EE. The EE-SE trade-off for the multi-input multi-output (MIMO) Rayleigh fading channel has been accurately approximated in the past but only in the low-SE regime. In this paper, we propose a novel and more generic closed-form approximation of this EE-SE trade-off which exhibits a greater accuracy for a wider range of SE values and antenna configurations. Our expression, which can easily be used for evaluating and comparing the EE-SE trade-off of MIMO communication systems, has been utilized in this paper for analyzing the impact of using multiple antennas on the EE and the EE gain of MIMO in comparison with single-input single-output (SISO) system. Our results indicate that EE can be improved predominantly through receive diversity in the very low-SE regime and that MIMO is far more energy efficient than SISO at high SE over the Rayleigh fading channel

    On the Energy Efficiency-Spectral Efficiency Trade-Off of the 2BS-DMIMO System

    Get PDF
    In this paper, we propose a novel closed-form approximation of the Energy Efficiency vs. Spectral Efficiency (EE-SE) trade-off for the uplink/downlink of distributed multiple-input multiple-output (DMIMO) system with two cooperating base stations. Our closed-form expression can be utilized for evaluating the idealistic and realistic EE-SE performances of various antenna configurations as well as assessing how DMIMO compares against MIMO system in terms of EE. Results show a tight match between our closed-form approximation and the Monte-Carlo simulation for both idealistic and realistic EESE trade-off. Our results also show that given a target SE requirement, there exists an optimal antenna setting that maximizes the EE. In addition, DMIMO scheme can offer significant improvement in terms of EE over the MIMO scheme

    On the relation between energy efficiency and spectral efficiency of multiple-antenna systems

    Get PDF
    Motivated by the increasing interest in energy-efficient communication systems, the relation between energy efficiency (EE) and spectral efficiency (SE) for multiple-input-multiple-output (MIMO) systems is investigated in this paper. To provide insights into the design of practical MIMO systems, we adopt a realistic power model and consider both independent Rayleigh fading and semicorrelated fading channels. We derived a novel and closed-form upper bound (UB) for the system EE as a function of SE. This UB exhibits great accuracy for a wide range of SE values and, thus, can be utilized for explicit assessment of the influence of SE on EE and for analytically addressing the EE optimization problems. Using this tight EE UB, our analysis unfolds two EE optimization issues: Given the number of transmit and receive antennas, an optimum value of SE is derived, such that the overall EE can be maximized, and given a specific value of SE, the optimal number of antennas is derived for maximizing the system EE

    Energy efficiency-spectral efficiency trade-off of transmit antenna selection

    Get PDF
    We investigate the energy efficiency-spectral efficiency (EE-SE) trade-off of transmit antenna selection/maximum ratio combining (TAS) scheme. A realistic power consumption model (PCM) is considered, and it is shown that using TAS can provide significant energy savings when compared to multiple-input multiple-output (MIMO) in the low to medium SE region, regardless the number of antennas, as well as outperform transmit beamforming scheme (MRT) for the entire SE range. For a fixed number of receive antennas, our results also show that the EE gain of TAS over MIMO becomes even greater as the number of transmit antennas increases. The optimal value of SE that maximizes the EE is obtained analytically, and confirmed by numerical results. Moreover, the influence of receiver correlation is also evaluated and it is shown that considering a non-realistic PCM can lead to mistakes when comparing TAS and MIMO

    On the energy efficiency-spectral efficiency trade-off of distributed MIMO systems

    Get PDF
    In this paper, the trade-off between energy efficiency (EE) and spectral efficiency (SE) is analyzed for both the uplink and downlink of the distributed multiple-input multiple-output (DMIMO) system over the Rayleigh fading channel while considering different types of power consumption models (PCMs). A novel tight closed-form approximation of the DMIMO EE-SE trade-off is presented and a detailed analysis is provided for the scenario with practical antenna configurations. Furthermore, generic and accurate low and high-SE approximations of this trade-off are derived for any number of radio access units (RAUs) in both the uplink and downlink channels. Our expressions have been utilized for assessing both the EE gain of DMIMO over co-located MIMO (CMIMO) and the incremental EE gain of DMIMO in the downlink channel. Our results reveal that DMIMO is more energy efficient than CMIMO for cell edge users in both the idealistic and realistic PCMs; whereas in terms of the incremental EE gain, connecting the user terminal to only one RAU is the most energy efficient approach when a realistic PCM is considered

    Energy-efficient power allocation for point-to-point MIMO systems over the rayleigh fading channel

    Get PDF
    It is well-established that transmitting at full power is the most spectral-efficient power allocation strategy for point-to-point (P2P) multi-input multi-output (MIMO) systems, however, can this strategy be energy efficient as well? In this letter, we address the most energy-efficient power allocation policy for symmetric P2P MIMO systems by accurately approximating in closed-form their optimal transmit power when a realistic MIMO power consumption model is considered. In most cases, being energy efficient implies a reduction in transmit and overall consumed powers at the expense of a lower spectral efficiency

    On the energy efficiency-spectral efficiency trade-off in the uplink of CoMP system

    Get PDF
    In this paper, we derive a generic closed-form approximation (CFA) of the energy efficiency-spectral efficiency (EE-SE) trade-off for the uplink of coordinated multi-point (CoMP) system and demonstrate its accuracy for both idealistic and realistic power consumption models (PCMs). We utilize our CFA to compare CoMP against conventional non-cooperative system with orthogonal multiple access. In the idealistic PCM, CoMP is more energy efficient than non-cooperative system due to a reduction in power consumption; whereas in the realistic PCM, CoMP can also be more energy efficient but due to an improvement in SE and mainly for cell-edge communication and small cell deployment
    • …
    corecore