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Abstract—Motivated by increased interests in energy efficient
communication systems, the relation between energy efficiency
(EE) and spectral efficiency (SE) for multiple-input multiple-
output (MIMO) systems is investigated in this paper. To provide
insight into the design of practical MIMO systems, we adopt
a realistic power model, as well as consider both independent
Rayleigh fading and semicorrelated fading channels. We derive
a novel and closed-form upper bound for the system EE as a
function of SE. This upper bound exhibits a great accuracy
for a wide range of SE values, and thus can be utilized for
explicitly assessing the influence of SE on EE, and analytically
addressing the EE optimization problems. Using this tight EE
upper bound, our analysis unfolds two EE optimization issues:
Given the number of transmit and receive antennas, an optimum
value of SE is derived such that the overall EE can be maximized;
Given a specific value of SE, the optimal number of antennas is
derived for maximizing the system EE.

Index Terms—Energy efficiency, Spectral efficiency, Multiple-
antenna systems, Rayleigh fading channels, Energy efficiency
optimization.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) systems using mul-
tiple antennas have drawn considerable attention, as they can
greatly improve spectral efficiency (SE) and link reliability in
wireless communications [1]. However, the use of multiple
antennas will also lead to increased energy consumption for
the extra circuit and signal processing. To this end, the
traditional SE metric is not adequate for providing insight
on designing practical MIMO systems, if the system energy
efficiency (EE) is of interest. Furthermore, due to the increas-
ing global concern about the energy consumption, innovative
technologies are required to improve the overall EE in wireless
systems [2].

Maximizing EE and SE are generally two conflicting ob-
jectives; but they can be linked and balanced through their
relationship as shown in [3]. For fading channels, calculations
of the ergodic capacity require to take expectations concerning
a random channel matrix. The problem of defining an explicit
expression for EE as a function of SE requires an expression
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for the inverse function of the capacity, and therefore is a
mathematically challenging task. The first attempt to ana-
lyze the relation of EE and SE is given in [4], where an
EE approximation is derived according to the first and the
second derivatives of the capacity equation. Using the same
approximation method, the work is then extended to relay
networks in [5] and [6], where a full duplex mode at the
relay is considered in [5] and half duplex considered in [6];
the work is also extended to virtual-MIMO networks in [7]
and cognitive radio networks in [8]. These approximations of
EE are accurate in the low SE region but largely inaccurate
otherwise. In addition, the circuit energy consumption, which
is often not negligible in practical wireless systems, is not
considered in the aforementioned papers. Most recently, a
more accurate approximation on the relation between EE
and SE for MIMO channels is presented in [9] and refined
in [10]: The approximation is in a closed-form expression
for independent and identically distributed (i.i.d.) Rayleigh
fading channels, but the expression cannot be extended to
correlated fading channels and the potential EE optimization
issues are not addressed. Different from the existing work,our
contributions in this paper are three-fold:

• We derive a simple and closed-form upper bound (UB)
for EE as a function of SE, for both i.i.d Rayleigh fading
and semicorrelated fading channels. The EE UB exhibits
a very good accuracy for a wide range of SE values.

• We analyze the relation between EE and SE, and the
effect of increasing the number of antennas on the
overall EE. To assist practical system design, a realistic
power model including both transmit and circuit power
consumption is considered.

• An optimum value of SE is derived for which the overall
EE is maximized when the number of transmit and
receive antennas are fixed; In addition, for a given value
of SE, the optimal number of antennas is derived such
that the overall EE is maximized.

The rest of this paper is organized as follows. Section II
specifies the system model. An accurate UB for the capacity
is derived in Section III and that for EE is derived in Section
IV. EE optimization issues are investigated in Section V.
Simulation results are in Section VI, and Section VII gives
a conclusion.

II. SYSTEM MODEL

We consider a point-to-point MIMO communication system
with t transmit andr receive antennas. We definen =
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max{t, r} and m = min{t, r}. The complex transmitted
signal vector is denoted byx ∈ Ct, and its total power is
represented byP regardless of the number of antennas, i.e.
E[x†x] = P , wherex† denotes the transpose conjugate ofx.
The received signaly ∈ Cr is then given byy = Hx+n, where
the channel matrixH ∈ C

r×t is complex Gaussian distributed
[11]. The noise vectorn is a zero-mean complexr-dimensional
additive white Gaussian noise (AWGN) with varianceN per
dimension, i.e.n∼CN r(0, NIr). The average signal-to-noise
ratio (SNR) isρ = P/N . We assume that perfect channel state
information (CSI) is known at the receiver but unknown to the
transmitter side.

In a practical setting, the total power of a transmitter such
as a base station (BS) is not equal toP , but includes various
elements such as the power for radio frequency (RF) circuitry,
baseband unit, or power amplifier. In general, the total power
has a nearly-linear relation with both the transmit powerP
and the antenna numbert [2]. Consequently, a linear power
model has been abstracted for the2 × 2 antenna setting and
various types of BSs in [2]. We adopt this power model, i.e.
the total power is

Ptot = t(ξP/t+ Pc) = ξP + tPc, (1)

wherePc is the load-independent circuit power at the mini-
mum nearly-zero output power, andξ is the scaling factor of
the load-dependent power. Note that the scaling over signal
load (i.e. the value ofξ) largely depends on the type of the
transmitter.

III. E RGODIC CAPACITY OF MIMO: EXPLICIT

EXPRESSIONVS. UB

The ergodic capacity of the MIMO system specified in
Section II is obtained by averaging the channel capacity with
respect to the random channel matrixH [12], i.e.

CMIMO = E

[
log2 det

(
Im +

ρ

t
Ξ

)]
bits/s/Hz,

with Ξ =

{
HH†, t ≥ r
H†H, t < r,

(2)

where the random matrixΞ ∈ Cm×m and Im denotes an
m×m identity matrix.

A. Independent and Identically Distributed MIMO Channels

We first consider an i.i.d. Rayleigh-fading case. Without
loss of generality, the channel matrix is assumed to have unit
variance entries, i.e.H ∼ CN r,t(0, Ir ⊗ It), where⊗ denotes
the Kronecker product of matrices. ThenΞ has a complex
central Wishart distribution withn degrees of freedom and
covariance matrixIm, i.e.Ξ ∼ CWm(n, Im). In the following
lemma, we give a preliminary result of UB onCMIMO .

Lemma 1: If H ∼ CN r,t(0, Ir⊗It), i.e. for an i.i.d. Rayleigh
fading MIMO channel, the UB of the ergodic capacity in
bits/s/Hz, denoted aŝCMIMO , is given by

ĈMIMO = m log2

(ρ
t

)
+log2(m!)+log2

[
Ln−m
m (−t/ρ)

]
, (3)

where m! denotes the factorial ofm, and Lα
m(x) is the

Laguerre polynomial of orderm [13] (eq. 8.970.1)

Lα
m(x) =

1

m!
exx−α dm

dxm
(e−xxm+α). (4)

In particular, for the case when SNR is high (i.e.P ≫ N ),
we have

ĈMIMO = m log2 (ρ/t) + log2 [n!/(n−m)!] . (5)

Proof : The closed-form UB forCMIMO in (3) was first derived
in [14] (Theorem 2). To obtain (5), we implementLn−m

m (0) =
n!/[m!(n−m)!] [13] (eq. 8.973.3).�

B. Spatially Semicorrelated MIMO Channels

In practice, the MIMO channels are often correlated due to
limited angular spreads or restrictions on array sizes at either
end. The effects of spatial semicorrelation can be reflectedby
using the Kronecker model

H =

{
Φ

1/2G, if t ≥ r
GΦ

1/2, if t < r,
(6)

whereG ∼ CN r,t(0, Ir ⊗ It) andΦ denotes the spatial cor-
relation matrix at either the transmitter or receiver end. Note
that here we focus our research on the semicorrelated fading
channels where the correlation occurs at the end with the
minimum number of antennas, in order to reflect the practical
mobile communication environments where insufficient array
spacing exists at mobile terminals [15]. In this case,Ξ has a
complex central Wishart distributionΞ ∼ CWm(n,Φ).

Lemma 2: For a spatially semicorrelated Rayleigh fading
MIMO channel, i.e.H is given by (6), under the condition of
high SNR, the ergodic capacity in bits/s/Hz is upper bounded
as

ĈMIMO = m log2(
ρ

t
) + log2

[
n!

(n−m)!

]
+ log2 det(Φ). (7)

Proof : See Appendix A.
Comparing (7) with (5), the capacity reduction because of

the spatial semicorrelation is− log2 det(Φ) bits/s/Hz at high
SNR. Note that, the results (5) and (7) provide simple and tight
UBs of the ergodic capacity, which are less accurate than the
explicit expression (2), but have the advantage of being express
in closed-form and can be used to evaluate the relation between
EE and SE for MIMO systems.

IV. ENERGY EFFICIENCY ANALYSIS OF MIMO CHANNELS

We use the well known metric of the system achievable
EE as the number of information bits transmitted per Joule of
energy, i.e.EMIMO = SMIMO/Ptot in bits/Joule, whereSMIMO

denotes SE of the system. For a system with unit bandwidth,
we haveSMIMO = CMIMO in (2). The choice ofSMIMO and
CMIMO helps avoid the abuse of notations that correspond to
the functions ofEMIMO andP [6]. According to (1) and (2),
both Ptot and SMIMO are related toP . Thus the impact of
SMIMO on EMIMO can be expressed as

EMIMO =SMIMO [ξP+tPc]
−1

=SMIMO
[
ξf−1(CMIMO )+tPc

]−1
,

(8)
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wheref−1: CMIMO ∈ [0,+∞) 7→ P ∈ [0,+∞) is the inverse
function of CMIMO . Equation (8) indicates that obtaining
an explicit expression ofEMIMO boils down to finding an
explicit formula forf−1(CMIMO ). However, due to the random
Rayleigh channel realizations in (2),f−1(CMIMO ) cannot be
straightforwardly formulated. One feasible approach would be
to use the closed-form UB ofCMIMO in Lemma 1 or Lemma 2
to find a solution tof−1(CMIMO ). This approach will help us
obtain an EE UB as a function of SE, which can be utilized for
tracking the EE of MIMO systems, and thus will be discussed
in this section.

A. EE UB for I.I.D. MIMO Channels

We use the closed-form UB ofCMIMO , and according to the
definition of EE, we obtain a closed-form UB for the system
EE as follows.

Proposition 1: If H ∼ CN r,t(0, Ir ⊗ It), i.e. for an i.i.d.
Rayleigh-fading MIMO channel, the UB for the number of
bits transmitted per Joule of energy, denoted byÊMIMO , is
given by

ÊMIMO =
SMIMO

tPc + tξN exp
{

SMIMO ln 2
m + 1

m ln
[
(n−m)!

n!

]} .

(9)
Proof : According to (8), whenSMIMO is small (correspond-
ingly P is small), the value ofEMIMO is dominated by
the circuit powerPc. In contrast,EMIMO is more sensitive
and needs a more accurate expression whenP is large. We
thus consider the high SNR case and employ (5) to find an
approximated solution tof−1(CMIMO ) as follows

f−1(CMIMO ) = tN2SMIMO/m+log2[
(n−m)!

n! ]/m. (10)

Substituting (10) into (8), we obtain (9). This completes the
proof.�

B. EE UB for Spatially Semicorrelated MIMO Channels

We now consider semicorrelated Rayleigh fading channels,
and use the capacity UB in Lemma 2 for finding an explicit
solution of P = f−1(CMIMO ). Solving P from (7), and
inserting the solution in (8), we thus obtain an EE UB for
spatially semicorrelated MIMO channels as shown in the
following.

Proposition 2: For a spatially semicorrelated Rayleigh fad-
ing MIMO channel, i.e.H is given by (6), the number of bits
transmitted per Joule of energy can be upper bounded by

ÊMIMO =
SMIMO

tPc + tξN exp
{

SMIMO ln 2
m + 1

m ln
[
(n−m)!
n! detΦ

]} .

(11)
Example (Exponential Correlation Model): We take a com-

mon model that often used to effectively quantify the spatial
correlation, i.e. the exponential correlation model [16],as
an example. More specifically, the correlation matrix can be
constructed using a single coefficientφ with |φ| ≤ 1,

Φij =

{
φ|j−i|, i ≤ j

φ|j−i|, i > j
(12)

wherex means the complex conjugate ofx. This exponential
model may approximate the correlation in a uniform linear
array under rich scattering conditions [16]. We considerΦ as
a l × l correlation matrix, and from (12), we have

detΦ = (1− φφ)l−1 = (1 − |φ|2)l−1, (13)

wherel could equal eithert or r depending on the correlation
at which side. Inserting (13) in (11), we will obtain the
EE UB of the Rayleigh fading channels with exponential
semicorrelation.

Therefore, for both i.i.d. and spatially semicorrelated MIMO
channels, the EE UB̂EMIMO has been obtained in a simple
closed-form expression. The EE UB is very valuable to realis-
tic MIMO systems: It can help the system explicitly track the
influence of SE on EE, and also address the EE optimization
problems as will be discussed in the following section.

V. ENERGY EFFICIENCY OPTIMIZATION ISSUES

In this subsection, we optimize the overall EE performance
of MIMO systems, by taking the factors, various values of SE
as well as different numbers of transmit and receive antennas,
into consideration. The optimization criterion is based onthe
tight EE UB derived above.

A. Optimum SE to Maximize EE

As stated above, for a given number oft andr, there exists
a certain region of SE corresponding to a better EE. In the
following proposition, the optimum value of SE is derived to
maximize the overall EE.

Proposition 3: For a spatially semicorrelated Rayleigh fad-
ing MIMO channel with correlation matrixΦ and t transmit
and r receive antennas, the optimum value of SE for which
the system EE is maximized, denoted byS∗

MIMO , is given by

S∗
MIMO =

m

ln(2)
+

m

ln(2)
ω

{
Pc

ξNe
exp

(
−

1

m
ln

[
(n−m)!

n! detΦ

])}
,

(14)
whereω{·} is the Lambertω-function satisfyingω(z)eω(z) =
z. Let detΦ = 1, S∗

MIMO is obtained for i.i.d. Rayleigh fading
MIMO channels.

Proof : We first consider spatially semicorrelated Rayleigh
fading channels, as the results of optimum SE for i.i.d. fading
channels can be obtained as a special case. One can apply
the method for convex optimization: From (11), the first-order
derivative ofÊMIMO with respect toSMIMO is given by

d ÊMIMO (SMIMO)
d SMIMO

=
[
tPc+tξNexp

{
SMIMO ln 2

m + 1
m ln

[
(n−m)!
n! detΦ

]}]−1

−
tξNSMIMO ln(2)exp

{
SMIMO ln(2)

m
+ 1

m
ln[ (n−m)!

n! det Φ ]
}

m
[
tPc+tξNexp

{
SMIMO ln 2

m
+ 1

m
ln[(n−m)!

n! det Φ ]
}]2 .

(15)
By setting d ÊMIMO (SMIMO)

d SMIMO
= 0, one can obtain a unique closed-

from solutionS∗
MIMO ∈ [0,+∞). We introduce Lambertω-

function [17], andS∗
MIMO is expressed as shown in (14). As a

special case of (14), i.e.detΦ = 1, we obtainS∗
MIMO for the

case of i.i.d. fading channels. This completes the proof.�
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B. Optimization of the Numbers of Antennas

As shown in (9) and (11), for a specific value of SE,
different numbers of transmit and receive antennas result in
different levels of EE. Finding out the optimal number of
antennas (botht andr) such that the overall EE is maximized,
is practically appealing and thus analyzed here. As it is not
always possible to place many antennas at the receiver in
practice,t ≥ r (i.e. m = r) is considered in this subsection.

Proposition 4: If H ∼ CN r,t(0, Ir ⊗ It) with t ≥ r, given
a targetSMIMO , for maximizing the overall EE, the optimal
numbers of transmit and receive antennas, denoted byt∗ and
r∗, are given by

t∗ = r∗ =

{
⌊τ⌋, if ÊMIMO (⌊τ⌋) ≥ ÊMIMO (⌈τ⌉)

⌈τ⌉, if ÊMIMO (⌊τ⌋) < ÊMIMO (⌈τ⌉),

whereτ = SMIMO ln(2)
2

{
ω

[(
4ξNe

PcSMIMO ln(2)

)− 1
2

]}−1

,

(16)

where⌊·⌋ and⌈·⌉ denote the floor and ceiling integer functions,
respectively.Proof : To find the maximum EE, treatt and r
as continuous variables. There are two natural restrictions of
t ≥ 1 andr ≥ 1. Consideringm = r, from (9), we obtain

ÊMIMO =
SMIMO

tPc + tξN exp
{
SMIMO ln 2

r + 1
r ln

[
(t−r)!

t!

]} . (17)

We can observe that for a specifict, increasingr will result
in a higher value ofEMIMO . It is because the system capacity
increases withr, as shown in (5), and no extra transmit power
is required. Thus, as the EE metric in (17) is a linear increasing
function with respect tor andt ≥ r ≥ 1, the maximum value
of EE is located atr∗ = t. Let r = t, we haveÊMIMO (t). In
addition, we implement Stirling’s formula, i.e.lnn! = n lnn−
n, for approximation and extending factorials to non-integer
values of argument. Then the first-order derivative ofÊMIMO (t)
concerningt is

d ÊMIMO (t)

d t
=

SMIMO

{
ξNe 2

SMIMO
t SMIMO ln (2)− t2Pc

}

t2
{
ξNe 2

SMIMO
t + tPc

}2 .

(18)
Setting (18) to zero fort will yield the non-integer optimal
solutionτ . Note that under the restriction oft ≥ 1, the solution
of τ is unique. Ast∗ andr∗ need to be integers, we substitute
t = ⌊τ⌋ or t = ⌈τ⌉ to ÊMIMO (t), compareÊMIMO (⌊τ⌋) and
ÊMIMO (⌈τ⌉), and thus obtaint∗ andr∗ as shown in (16).�

We then analyze the case of spatially semicorrelated MIMO
channels, which is more complicated than the i.i.d. case, as
detΦ is not independent to the number of antennas. We thus
choose the exponential correlation model with coefficientφ
and obtain the following proposition.

Proposition 5: For an exponentially semicorrelated Rayleigh
fading MIMO channel with correlation coefficientφ andt ≥ r,
given a targetSMIMO , to maximize the overall EE, the optimal

t∗ andr∗ are

t∗ = r∗ =

{
⌊τ⌋, if ÊMIMO (⌊τ⌋) ≥ ÊMIMO (⌈τ⌉)

⌈τ⌉, if ÊMIMO (⌊τ⌋) < ÊMIMO (⌈τ⌉),

whereτ=
SMIMO

2/ ln(2)

{
ω

[(
4ξNe[S ln(2)+ln(1−|φ|2)]
S2

MIMO ln(2)2Pc(1−|φ|2)

)− 1
2

]}−1

.

(19)
Proof : Considering the exponential correlation with coefficient
φ and consideringm = r, from (11) and (13), we have

ÊMIMO (t) =

SMIMO

tPc + tξNexp
{
SMIMO ln 2

t − 1
t ln(t!)−

t−1
t ln(1 − |φ|2)

} .
(20)

Treat t as a continuous variable. The first-order derivative of
ÊMIMO (t) concerningt is given by

d ÊMIMO(t)
d t

=
SMIMO

{
ξNe 2

SMIMO
t (1−|φ|2)

−

t−1
t [SMIMO ln(2)+ln(1−|φ|2)]−t2Pc

}

t2
{
ξNe 2

SMIMO
t (1−|φ|2)−

t−1
t +tPc

}2

≈
SMIMO

{
ξNe 2

SMIMO
t [SMIMO ln(2)+ln(1−|φ|2)]−t2(1−|φ|2)Pc

}

t2(1−|φ|2)
{
ξNe 2

SMIMO
t (1−|φ|2)−1+tPc

}2 .

(21)
Setting (21) to zero, we get the non-integer solutionτ ;
substitutingt = ⌊τ⌋ or t = ⌈τ⌉ to ÊMIMO (t), we thus obtain
the optimalt∗ andr∗ as shown in (19). When the correlation
coefficientφ = 0 (i.e., no correlation happened), (19) reduces
to (16), and therefore (19) still holds for the i.i.d. fading
channels.�

For a practical MIMO communication system with a spe-
cific type of base station, given any number of transmit and
receive antennas, Proposition 3 can help the system explicitly
find out the optimum value of SE, such that the system is
able to save energy to the maximum extent. In addition, for
a system having a specific SE requirement, Proposition 4 and
Proposition 5 show the optimal numbers oft andr which can
be used for the system to maximize the overall EE. These
findings are therefore particularly valuable and appealingto
realistic wireless communication systems.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present the EE performance and the
relation between EE and SE for MIMO channels by using
both simulation and analytical results. The simulation results
are obtained from the Monte Carlo method for random channel
realizations. Without loss of generality, we assume the noise
varianceN is normalized to unity. The values of the power
model parameters for the transmitter are assumed asξ = 2.4
andPc = 130, which are adopted from [2] where a Macro
type of transmitter is considered.

Firstly, we consider i.i.d. Rayleigh-fading MIMO channels,
and verify the accuracy of the EE UB given by Proposition 1 in
Fig. 1 (a). This figure shows that the EE UBs are quite tight to
the simulation results for the entire range of SE, regardless of
the number of antennas. Using the EE UBs, Fig. 1 (b) shows



5

how the load-independent circuit power (i.e.tPc) and load-
dependent power (i.e.ξP ) components impact the overall EE.
When only load-dependent power is considered, a monotonic
tradeoff relationship between EE and SE exists, i.e., increasing
SE leads to a decrease in EE. With the total supply power, as
illustrated in both Fig. 1 (a) and (b), there is a certain region
of SE that corresponds to better EE: When SE is low, the
overall EE is dominated by the constant circuit power. As SE
increases, the load-dependent power contributes more toPtot;
thus, EE increases up to a certain level but finally decreases.
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Fig. 1. The relation between EE and SE for i.i.d. MIMO channels with t
transmit andr receive antennas (EE simulation results and UBs are shown in
(a), and the effects of load-dependent power on EE are in (b).)

Fig. 2 shows the EE performance for Rayleigh-fading
MIMO channels with exponential correlation at the receiver
side considering the same numbers of antennas as in Fig. 1
(a). The correlation coefficientφ is set to 0.5, and the UBs
are plotted using Proposition 2. Compared to the i.i.d. casein
Fig. 1 (a), both EE simulations and UBs in Fig. 2 are slightly
lower due to the effects from channel correlation. Nevertheless,
for both cases, the EE UBs are very tight to the simulation
results for the whole range of SE, which is important for
the optimization purposes. Taking practical small numbersof
antennas as examples, by using Proposition 3, we have the
optimum value of SE equal to 9.65 bits/s/Hz fort = r = 2,
and 16.54 bits/s/Hz fort = 4, r = 3; their accuracies are
demonstrated by simulation results in Fig. 2.

Fig. 3 shows EE of exponentially semicorrelated Rayleigh-
fading MIMO channels as a function of correlation coefficient
φ at SMIMO = 20 bits/s/Hz. As expected, EE decreases
significantly with an increase in correlation coefficientφ,
particularly for largert andr as the correlation is worse. But
the case oft = r = 6 makes an exception: It is because
that when SE equals 20 bits/s/Hz, circuit power (i.e.tPc)
dominates EE (as shown in Fig. 2), and EE under this case is
more tolerant to the channel correlation. In contrast, whenthe
transmit power dominates, EE will be more sensitive to the
value ofφ.

Using the accurate EE UBs, Fig. 4 (a) demonstrates the
effects of varying the numbers of antennas on the relation
between EE and SE for Rayleigh-fading MIMO channels.
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Fig. 2. EE simulations and UBs for spatially correlated Rayleigh-fading
channels witht transmit andr receive antennas (The receiver-side correlations
are exponential correlations withφ = 0.5. )

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

E
ne

rg
y 

E
ffi

ci
en

cy
 (

bi
ts

/J
ou

le
)

Correlation Coefficient φ

EE Simulations for
Spatially Correlated MIMO

EE UBs for Spatially
Correlated MIMO

t=2, r=2

t=4, r=3

SE=20 bits/s/Hz

t=4, r=4
t=6, r=6
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φ is set to 0.5 for the case of correlated fading channels.
When the number of antennas are fixed, there exists an
optimum value of SE corresponding to a maximized EE, as
illustrated in Proposition 3. In addition, for certain values
of SE, Fig. 4 (b) shows the optimal numbers of antennas
(t∗ = r∗) for maximizing the overall EE, using Proposition
4 and Proposition 5 for i.i.d. fading and semicorrelated fading
channels, respectively. Every step changing in Fig. 4 (b) are
almost in correspondence with Fig. 4 (a) for a maximized EE,
which also demonstrates the accuracy of Proposition 4 and
Proposition 5.

VII. C ONCLUSION

This paper has investigated the EE performance and the
influence of SE on EE in MIMO systems over Rayleigh fading
channels, while considering a realistic power model. We have
derived a simple and closed-form UB for the system ergodic
capacity, and based on which we have proposed a novel and
closed-form UB for EE as a function of SE. The effects of
various fading channels have been considered, including i.i.d.
Rayleigh fading channels and semicorrelated fading channels.
The EE UB exhibits a very good accuracy for a wide range
of SE values, and thus is utilized for analytically addressing
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EE and SE for Rayleigh-fading MIMO channels (The correlation coefficient
φ is set to 0.5 for the case of exponentially semicorrelated channels.)

the EE optimization issues. Our results have demonstrated
that, compared to the existing work only considering transmit
power (where a monotonic trade-off relation exists between
EE and SE), there is a certain region of SE that corresponds
to better EE performance. The optimum value of SE has
been derived such that the overall EE is maximized when the
number of transmit and receive antennas is given. In addition,
our results have shown that different numbers of antennas
result in different levels of EE. Given a target SE, the optimal
number of antennas has been derived for maximizing the EE
performance.
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APPENDIX A
PROOF OFLEMMA 2

If Y ∼ CWm(n,Φ), the density function ofY is [18]

pY(Y)=
1

Γm(n)
[det(Φ)]−n[det(Y)]n−metr(−Φ−1Y), Y > 0

(22)
where tr(A) denotes the trace ofA and etr(A) = exp tr(A).
Γm(n) = πm(m−1)/2

∏m−1
j=0 Γ(n − j) is the multivariate

gamma function andΓ(·) is the gamma function. From the
density ofY, we have

E[det(Y)] =
1

Γm(n)
[det(Φ)]−n ·

∫
Y>0[det(Y)]

n−m+1etr(−Φ
−1Y) dY.

(23)

Make the change of variateY = Φ
1/2ZΦ1/2, with Jacobian

(dY) = [det(Φ)]m(dZ). Then we have

E[det(Y)]

= 1
Γm(n) [det(Φ)]

−n
∫

Z>0[det(Z)]
n−m+1[det(Φ)]n+1etr(−Z)dZ

= 1
Γm(n) [det(Φ)]−n[det(Φ)]n+1Γm(n+ 1)

= det(Φ)
∏m−1

j=0 (n− j).
(24)

Applying Jensen’s inequality to (2) and at high SNR, we have

CMIMO ≤ log2 E
[
det

(
I +

ρ

t
Ξ

)]
≈ log2 E

[
det

(ρ
t
Ξ

)]
. (25)

As Ξ ∼ CWm(n,Φ), we letΞ=Y. Using (24), we get (7).
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