10 research outputs found

    On the Embedding Phase of the Hopcroft and Tarjan Planarity Testing Algorithm

    Get PDF
    We give a detailed description of the embedding phase of the Hopcroft and Tarjan planarity testing algorithm. The embedding phase runs in linear time. An implementation based on this paper can be found in Mehlhorn, Mutzel, N{\"a}her, 1993

    A Planarity Test via Construction Sequences

    Full text link
    Optimal linear-time algorithms for testing the planarity of a graph are well-known for over 35 years. However, these algorithms are quite involved and recent publications still try to give simpler linear-time tests. We give a simple reduction from planarity testing to the problem of computing a certain construction of a 3-connected graph. The approach is different from previous planarity tests; as key concept, we maintain a planar embedding that is 3-connected at each point in time. The algorithm runs in linear time and computes a planar embedding if the input graph is planar and a Kuratowski-subdivision otherwise

    Web-based drawing software for graphs in 3D and two layout algorithms

    Get PDF
    A new web-based software system for visualization and manipulation of graphs in 3D, named We3Graph is presented with a focus on accessibility, customizability for applications of graph drawing, usability and extendibility. The software system allows multiple users to work on the same graph at the same time and is accessible through web browsers. The software can be extended using plugins written in any programming language and custom render engines written in the Javascript language. Also two new algorithms are proposed to answer the following question, previously raised in [53]: Given a graph G with n vertices, V = fv1;v2; : : : ;vng, and given a set of n distinct points P = fp1; p2; : : : ; png each with integer coordinates in three dimensions, can G be drawn crossing-free on P with vi at pi and with a number of bends polynomial in n and in a volume polynomial in n and the dimension of P

    On the Embedding Phase of the Hopcroft and Tarjan Planarity Testing Algorithm

    No full text
    We give a detailed description of the embedding phase of the Hopcroft and Tarjan planarity testing algorithm. The embedding phase runs in linear time. An implementation based on this paper can be found in [Mehlhorn, Mutzel, Näher, 1993]

    On the Embedding Phase of the Hopcroft and Tarjan Planarity Testing Algorithm

    No full text
    We give a detailed description of the embedding phase of the Hopcroft and Tarjan planarity testing algorithm. The embedding phase runs in linear time. An implementation based on this paper can be found in [MMN93]

    Constrained Planarity and Augmentation Problems

    Get PDF
    A clustered graph C=(G,T) consists of an undirected graph G and a rooted tree T in which the leaves of T correspond to the vertices of G=(V,E). Each vertex m in T corresponds to a subset of the vertices of the graph called ``cluster''. c-planarity is a natural extension of graph planarity for clustered graphs, and plays an important role in automatic graph drawing. The complexity status of c-planarity testing is unknown. It has been shown by Dahlhaus, Eades, Feng, Cohen that c-planarity can be tested in linear time for c-connected graphs, i.e., graphs in which the cluster induced subgraphs are connected. In the first part of the thesis, we provide a polynomial time algorithms for c-planarity testing of specific planar clustered graphs: Graphs for which - all nodes corresponding to the non-c-connected clusters lie on the same path in T starting at the root of T, or graphs in which for each non-connected cluster its super-cluster and all its siblings in T are connected, - for all clusters m G-G(m) is connected. The algorithms are based on the concepts for the subgraph induced planar connectivity augmentation problem, also presented in this thesis. Furthermore, we give some characterizations of c-planar clustered graphs using minors and dual graphs and introduce a c-planar augmentation method. Parts II deals with edge deletion and bimodal crossing minimization. We prove that the maximum planar subgraph problem remains NP-complete even for non-planar graphs without a minor isomorphic to either K(5) or K(3,3), respectively. Further, we investigate the problem of finding a minimum weighted set of edges whose removal results in a graph without minors that are contractible onto a prespecified set of vertices. Finally, we investigate the problem of drawing a directed graph in two dimensions with a minimal number of crossings such that for every node the incoming and outgoing edges are separated consecutively in the cyclic adjacency lists. It turns out that the planarization method can be adapted such that the number of crossings can be expected to grow only slightly for practical instances

    Algorithms for Incremental Planar Graph Drawing and Two-page Book Embeddings

    Get PDF
    Subject of this work are two problems related to ordering the vertices of planar graphs. The first one is concerned with the properties of vertex-orderings that serve as a basis for incremental drawing algorithms. Such a drawing algorithm usually extends a drawing by adding the vertices step-by-step as provided by the ordering. In the field of graph drawing several orderings are in use for this purpose. Some of them, however, lack certain properties that are desirable or required for classic incremental drawing methods. We narrow down these properties, and introduce the bitonic st-ordering, an ordering which combines the features only available when using canonical orderings with the flexibility of st-orderings. The additional property of being bitonic enables an st-ordering to be used in algorithms that usually require a canonical ordering. With this in mind, we describe a linear-time algorithm that computes such an ordering for every biconnected planar graph. Unlike canonical orderings, st-orderings extend to directed graphs, in particular planar st-graphs. Being able to compute bitonic st-orderings for planar st-graphs is of particular interest for upward planar drawing algorithms, since traditional incremental algorithms for undirected planar graphs might be adapted to directed graphs. Based on this observation, we give a full characterization of the class of planar st-graphs that admit such an ordering. This includes a linear-time algorithm for recognition and ordering. Furthermore, we show that by splitting specific edges of an instance that is not part of this class, one is able to transform it into one for which then such an ordering exists. To do so, we describe a linear-time algorithm for finding the smallest set of edges to split. We show that for a planar st-graph G=(V,E), |V|−3 edge splits are sufficient and every edge is split at most once. This immediately translates to the number of bends required for upward planar poly-line drawings. More specifically, we show that every planar st-graph admits an upward planar poly-line drawing in quadratic area with at most |V|−3 bends in total and at most one bend per edge. Moreover, the drawing can be obtained in linear time. The second part is concerned with embedding planar graphs with maximum degree three and four into books. Besides providing a simplified incremental linear-time algorithm for embedding triconnected 3-planar graphs into a book of two pages, we describe a linear-time algorithm to compute a subhamiltonian cycle in a triconnected 4-planar graph
    corecore