5,329 research outputs found

    D-ADMM: A Communication-Efficient Distributed Algorithm For Separable Optimization

    Full text link
    We propose a distributed algorithm, named Distributed Alternating Direction Method of Multipliers (D-ADMM), for solving separable optimization problems in networks of interconnected nodes or agents. In a separable optimization problem there is a private cost function and a private constraint set at each node. The goal is to minimize the sum of all the cost functions, constraining the solution to be in the intersection of all the constraint sets. D-ADMM is proven to converge when the network is bipartite or when all the functions are strongly convex, although in practice, convergence is observed even when these conditions are not met. We use D-ADMM to solve the following problems from signal processing and control: average consensus, compressed sensing, and support vector machines. Our simulations show that D-ADMM requires less communications than state-of-the-art algorithms to achieve a given accuracy level. Algorithms with low communication requirements are important, for example, in sensor networks, where sensors are typically battery-operated and communicating is the most energy consuming operation.Comment: To appear in IEEE Transactions on Signal Processin

    Distributed Model Predictive Consensus via the Alternating Direction Method of Multipliers

    Full text link
    We propose a distributed optimization method for solving a distributed model predictive consensus problem. The goal is to design a distributed controller for a network of dynamical systems to optimize a coupled objective function while respecting state and input constraints. The distributed optimization method is an augmented Lagrangian method called the Alternating Direction Method of Multipliers (ADMM), which was introduced in the 1970s but has seen a recent resurgence in the context of dramatic increases in computing power and the development of widely available distributed computing platforms. The method is applied to position and velocity consensus in a network of double integrators. We find that a few tens of ADMM iterations yield closed-loop performance near what is achieved by solving the optimization problem centrally. Furthermore, the use of recent code generation techniques for solving local subproblems yields fast overall computation times.Comment: 7 pages, 5 figures, 50th Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 201

    On the Convergence of Alternating Direction Lagrangian Methods for Nonconvex Structured Optimization Problems

    Full text link
    Nonconvex and structured optimization problems arise in many engineering applications that demand scalable and distributed solution methods. The study of the convergence properties of these methods is in general difficult due to the nonconvexity of the problem. In this paper, two distributed solution methods that combine the fast convergence properties of augmented Lagrangian-based methods with the separability properties of alternating optimization are investigated. The first method is adapted from the classic quadratic penalty function method and is called the Alternating Direction Penalty Method (ADPM). Unlike the original quadratic penalty function method, in which single-step optimizations are adopted, ADPM uses an alternating optimization, which in turn makes it scalable. The second method is the well-known Alternating Direction Method of Multipliers (ADMM). It is shown that ADPM for nonconvex problems asymptotically converges to a primal feasible point under mild conditions and an additional condition ensuring that it asymptotically reaches the standard first order necessary conditions for local optimality are introduced. In the case of the ADMM, novel sufficient conditions under which the algorithm asymptotically reaches the standard first order necessary conditions are established. Based on this, complete convergence of ADMM for a class of low dimensional problems are characterized. Finally, the results are illustrated by applying ADPM and ADMM to a nonconvex localization problem in wireless sensor networks.Comment: 13 pages, 6 figure

    On linear convergence of a distributed dual gradient algorithm for linearly constrained separable convex problems

    Full text link
    In this paper we propose a distributed dual gradient algorithm for minimizing linearly constrained separable convex problems and analyze its rate of convergence. In particular, we prove that under the assumption of strong convexity and Lipshitz continuity of the gradient of the primal objective function we have a global error bound type property for the dual problem. Using this error bound property we devise a fully distributed dual gradient scheme, i.e. a gradient scheme based on a weighted step size, for which we derive global linear rate of convergence for both dual and primal suboptimality and for primal feasibility violation. Many real applications, e.g. distributed model predictive control, network utility maximization or optimal power flow, can be posed as linearly constrained separable convex problems for which dual gradient type methods from literature have sublinear convergence rate. In the present paper we prove for the first time that in fact we can achieve linear convergence rate for such algorithms when they are used for solving these applications. Numerical simulations are also provided to confirm our theory.Comment: 14 pages, 4 figures, submitted to Automatica Journal, February 2014. arXiv admin note: substantial text overlap with arXiv:1401.4398. We revised the paper, adding more simulations and checking for typo
    • …
    corecore