623 research outputs found

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    Random induced subgraphs of Cayley graphs induced by transpositions

    Get PDF
    In this paper we study random induced subgraphs of Cayley graphs of the symmetric group induced by an arbitrary minimal generating set of transpositions. A random induced subgraph of this Cayley graph is obtained by selecting permutations with independent probability, λn\lambda_n. Our main result is that for any minimal generating set of transpositions, for probabilities λn=1+ϵnn−1\lambda_n=\frac{1+\epsilon_n}{n-1} where n−1/3+δ≤ϵn0n^{-{1/3}+\delta}\le \epsilon_n0, a random induced subgraph has a.s. a unique largest component of size ℘(ϵn)1+ϵnn−1n!\wp(\epsilon_n)\frac{1+\epsilon_n}{n-1}n!, where ℘(ϵn)\wp(\epsilon_n) is the survival probability of a specific branching process.Comment: 18 pages, 1 figur

    Epidemic Spreading with External Agents

    Full text link
    We study epidemic spreading processes in large networks, when the spread is assisted by a small number of external agents: infection sources with bounded spreading power, but whose movement is unrestricted vis-\`a-vis the underlying network topology. For networks which are `spatially constrained', we show that the spread of infection can be significantly speeded up even by a few such external agents infecting randomly. Moreover, for general networks, we derive upper-bounds on the order of the spreading time achieved by certain simple (random/greedy) external-spreading policies. Conversely, for certain common classes of networks such as line graphs, grids and random geometric graphs, we also derive lower bounds on the order of the spreading time over all (potentially network-state aware and adversarial) external-spreading policies; these adversarial lower bounds match (up to logarithmic factors) the spreading time achieved by an external agent with a random spreading policy. This demonstrates that random, state-oblivious infection-spreading by an external agent is in fact order-wise optimal for spreading in such spatially constrained networks

    Hierarchically hyperbolic spaces I: curve complexes for cubical groups

    Get PDF
    In the context of CAT(0) cubical groups, we develop an analogue of the theory of curve complexes and subsurface projections. The role of the subsurfaces is played by a collection of convex subcomplexes called a \emph{factor system}, and the role of the curve graph is played by the \emph{contact graph}. There are a number of close parallels between the contact graph and the curve graph, including hyperbolicity, acylindricity of the action, the existence of hierarchy paths, and a Masur--Minsky-style distance formula. We then define a \emph{hierarchically hyperbolic space}; the class of such spaces includes a wide class of cubical groups (including all virtually compact special groups) as well as mapping class groups and Teichm\"{u}ller space with any of the standard metrics. We deduce a number of results about these spaces, all of which are new for cubical or mapping class groups, and most of which are new for both. We show that the quasi-Lipschitz image from a ball in a nilpotent Lie group into a hierarchically hyperbolic space lies close to a product of hierarchy geodesics. We also prove a rank theorem for hierarchically hyperbolic spaces; this generalizes results of Behrstock--Minsky, Eskin--Masur--Rafi, Hamenst\"{a}dt, and Kleiner. We finally prove that each hierarchically hyperbolic group admits an acylindrical action on a hyperbolic space. This acylindricity result is new for cubical groups, in which case the hyperbolic space admitting the action is the contact graph; in the case of the mapping class group, this provides a new proof of a theorem of Bowditch.Comment: To appear in "Geometry and Topology". This version incorporates the referee's comment
    • …
    corecore