1,586 research outputs found

    Efficient Implementation on Low-Cost SoC-FPGAs of TLSv1.2 Protocol with ECC_AES Support for Secure IoT Coordinators

    Get PDF
    Security management for IoT applications is a critical research field, especially when taking into account the performance variation over the very different IoT devices. In this paper, we present high-performance client/server coordinators on low-cost SoC-FPGA devices for secure IoT data collection. Security is ensured by using the Transport Layer Security (TLS) protocol based on the TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 cipher suite. The hardware architecture of the proposed coordinators is based on SW/HW co-design, implementing within the hardware accelerator core Elliptic Curve Scalar Multiplication (ECSM), which is the core operation of Elliptic Curve Cryptosystems (ECC). Meanwhile, the control of the overall TLS scheme is performed in software by an ARM Cortex-A9 microprocessor. In fact, the implementation of the ECC accelerator core around an ARM microprocessor allows not only the improvement of ECSM execution but also the performance enhancement of the overall cryptosystem. The integration of the ARM processor enables to exploit the possibility of embedded Linux features for high system flexibility. As a result, the proposed ECC accelerator requires limited area, with only 3395 LUTs on the Zynq device used to perform high-speed, 233-bit ECSMs in 413 µs, with a 50 MHz clock. Moreover, the generation of a 384-bit TLS handshake secret key between client and server coordinators requires 67.5 ms on a low cost Zynq 7Z007S device

    An efficient and secure RSA--like cryptosystem exploiting R\'edei rational functions over conics

    Full text link
    We define an isomorphism between the group of points of a conic and the set of integers modulo a prime equipped with a non-standard product. This product can be efficiently evaluated through the use of R\'edei rational functions. We then exploit the isomorphism to construct a novel RSA-like scheme. We compare our scheme with classic RSA and with RSA-like schemes based on the cubic or conic equation. The decryption operation of the proposed scheme turns to be two times faster than RSA, and involves the lowest number of modular inversions with respect to other RSA-like schemes based on curves. Our solution offers the same security as RSA in a one-to-one communication and more security in broadcast applications.Comment: 18 pages, 1 figur

    Elliptical Curve Digital Signatures Algorithm

    Get PDF
    Elliptical digital signatures algorithm provides security services for resource constrained embedded devices. The ECDSA level security can be enhanced by several parameters as parameter key size and the security level of ECDSA elementary modules such as hash function, elliptic curve point multiplication on koblitz curve which is used to compute public key and a pseudo-random generator which generates key pair generation. This paper describes novel security approach on authentication schemes as a modification of ECDSA scheme. This paper provides a comprehensive survey of recent developments on elliptic curve digital signatures approaches. The survey of ECDSA involves major issues like security of cryptosystem, RFID-tag authentication, Montgomery multiplication over binary fields, Scaling techniques, Signature generation ,signature verification, point addition and point doubling of the different coordinate system and classification. DOI: 10.17762/ijritcc2321-8169.150318
    corecore