209,492 research outputs found

    Modeling and Design of Millimeter-Wave Networks for Highway Vehicular Communication

    Get PDF
    Connected and autonomous vehicles will play a pivotal role in future Intelligent Transportation Systems (ITSs) and smart cities, in general. High-speed and low-latency wireless communication links will allow municipalities to warn vehicles against safety hazards, as well as support cloud-driving solutions to drastically reduce traffic jams and air pollution. To achieve these goals, vehicles need to be equipped with a wide range of sensors generating and exchanging high rate data streams. Recently, millimeter wave (mmWave) techniques have been introduced as a means of fulfilling such high data rate requirements. In this paper, we model a highway communication network and characterize its fundamental link budget metrics. In particular, we specifically consider a network where vehicles are served by mmWave Base Stations (BSs) deployed alongside the road. To evaluate our highway network, we develop a new theoretical model that accounts for a typical scenario where heavy vehicles (such as buses and lorries) in slow lanes obstruct Line-of-Sight (LOS) paths of vehicles in fast lanes and, hence, act as blockages. Using tools from stochastic geometry, we derive approximations for the Signal-to-Interference-plus-Noise Ratio (SINR) outage probability, as well as the probability that a user achieves a target communication rate (rate coverage probability). Our analysis provides new design insights for mmWave highway communication networks. In considered highway scenarios, we show that reducing the horizontal beamwidth from 9090^\circ to 3030^\circ determines a minimal reduction in the SINR outage probability (namely, 41024 \cdot 10^{-2} at maximum). Also, unlike bi-dimensional mmWave cellular networks, for small BS densities (namely, one BS every 500500 m) it is still possible to achieve an SINR outage probability smaller than 0.20.2.Comment: Accepted for publication in IEEE Transactions on Vehicular Technology -- Connected Vehicles Serie

    On-board unit and its possibilities of communications on safety and security principles

    Get PDF
    The technical solution of on-board unit (OBU) for vehicles used for dangerous good transport and design of vehicle sensor network (based on CAN bus) for dangerous good monitoring will be discussed. In presentation the conception of GSM/GPRS networking subsystem for real time data transmission into monitoring centre will be described. Next themes of discussion will be focused on the possibilities of solution of safety-related communication channel for safety sensor network in accordance with standard for functional safety of Electrical / Electronic / Programmable Electronic (E/E/PE) systems IEC 61508 [4], recommended methods of risk analysis and possibilities of their modelling and proposal of secure communication channel over GSM/GPRS for secure data transmission into control centre on the base of IPsec protocol

    Controller Design and Experimental Validation for Connected Vehicle Systems Subject to Digital Effects and Stochastic Packet Drops

    Full text link
    Vehicle-to-everything (V2X) communication allows vehicles to monitor the nearby traffic environment, including participants that are beyond the line of sight. Equipping conventional vehicles with V2X devices results in connected vehicles (CVs) while incorporating the information provided by V2X devices into the controllers of automated vehicles (AVs) leads to connected automated vehicles (CAVs). CAVs have great potential for improving driving comfort, reducing fuel consumption and advancing active safety for individual vehicles, as well as enhancing traffic efficiency and mobility for human-dominated traffic systems. In this dissertation, we study a class of connected cruise control (CCC) algorithms for longitudinal control of CAVs, where they respond to the motion information of one or multiple connected vehicles ahead. For validation and demonstration purposes, we utilize a scaled connected vehicle testbed consisting of a group of ground robots, which can provide us with insights about the controller design of full-size vehicles. On the one hand, intermittencies in V2X communication combined with the digital implementation of controllers introduce information delays. To ensure the performance of individual CAVs and the overall traffic, a set of methods is proposed for design and analysis of such communication-based controllers. We validate them with the scaled testbed by conducting a series of experiments on two-car predecessor-follower systems, cascaded predecessor-follower systems, and more complex connected vehicle systems. It is demonstrated that CAVs utilizing information about multiple preceding vehicles in the CCC algorithm can improve the system performance even for low penetration levels. This can be beneficial at the early stage of vehicle automation when human-driven vehicles still dominate the traffic system. On the other hand, we study the delay variations caused by stochastic packet drops in V2X communication and derive the stochastic processes describing the dynamics for the predecessor-follower systems. The dynamics of the mean, second moment and covariance are utilized to obtain stability conditions. Then the results of the two-car predecessor-follower system with stochastic delay variations are extended to an open chain as well as to a closed ring of cascaded predecessor-followers where stochastic packet drops lead to heterogeneity among different V2X devices. It is shown that the proposed analytical methods allow CCC design for CAVs that can achieve stability and stochastic disturbance attenuation in the presence of stochastic packet drops in complex connected vehicle systems.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145874/1/wubing_1.pd

    Design and Control of a Dynamic and Autonomous Trackless Vehicle Using Onboard and Environmental Sensors

    Get PDF
    The purpose of this thesis is to explore the current state of automated guided vehicles (AGVs), sensors available for the vehicles to be equipped with, control systems for the vehicles to run on, and wireless technology to connect the whole system together. With a technological push towards increasing automation and maximizing the possible throughput of systems, automated technology needs to improve for trackless and wireless systems such as vehicles that can be used to move loads in a vast array of applications. The goal of this research is to develop and propose improvements in both vehicle and control system design that allows for improved safety and efficiency. Right now the main issues are maneuverability of vehicles and control systems being adaptive enough to deal with connection issues between systems. While prolonged connection issues will result in a stoppage of operation of any system that relies on wireless communication, intermittent issues can also cause systems to have an emergency stop. I have looked into ways to offload tasks from the central system and allow the vehicles themselves to have more computational privileges such that they can operate in a semi-independent manner. The result is a proposed system that remedies or limits negative effects that currently cause issues with trackless vehicles and control systems working with remote systems that communicate via wireless means

    MAR-CPS: Measurable Augmented Reality for Prototyping Cyber-Physical Systems

    Get PDF
    Cyber-Physical Systems (CPSs) refer to engineering platforms that rely on the inte- gration of physical systems with control, computation, and communication technologies. Autonomous vehicles are instances of CPSs that are rapidly growing with applications in many domains. Due to the integration of physical systems with computational sens- ing, planning, and learning in CPSs, hardware-in-the-loop experiments are an essential step for transitioning from simulations to real-world experiments. This paper proposes an architecture for rapid prototyping of CPSs that has been developed in the Aerospace Controls Laboratory at the Massachusetts Institute of Technology. This system, referred to as MAR-CPS (Measurable Augmented Reality for Prototyping Cyber-Physical Systems), includes physical vehicles and sensors, a motion capture technology, a projection system, and a communication network. The role of the projection system is to augment a physical laboratory space with 1) autonomous vehicles' beliefs and 2) a simulated mission environ- ment, which in turn will be measured by physical sensors on the vehicles. The main focus of this method is on rapid design of planning, perception, and learning algorithms for au- tonomous single-agent or multi-agent systems. Moreover, the proposed architecture allows researchers to project a simulated counterpart of outdoor environments in a controlled, indoor space, which can be crucial when testing in outdoor environments is disfavored due to safety, regulatory, or monetary concerns. We discuss the issues related to the design and implementation of MAR-CPS and demonstrate its real-time behavior in a variety of problems in autonomy, such as motion planning, multi-robot coordination, and learning spatio-temporal fields.Boeing Compan

    Robust and secure resource management for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.Modern vehicles are examples of complex cyber-physical systems with tens to hundreds of interconnected Electronic Control Units (ECUs) that manage various vehicular subsystems. With the shift towards autonomous driving, emerging vehicles are being characterized by an increase in the number of hardware ECUs, greater complexity of applications (software), and more sophisticated in-vehicle networks. These advances have resulted in numerous challenges that impact the reliability, security, and real-time performance of these emerging automotive systems. Some of the challenges include coping with computation and communication uncertainties (e.g., jitter), developing robust control software, detecting cyber-attacks, ensuring data integrity, and enabling confidentiality during communication. However, solutions to overcome these challenges incur additional overhead, which can catastrophically delay the execution of real-time automotive tasks and message transfers. Hence, there is a need for a holistic approach to a system-level solution for resource management in automotive cyber-physical systems that enables robust and secure automotive system design while satisfying a diverse set of system-wide constraints. ECUs in vehicles today run a variety of automotive applications ranging from simple vehicle window control to highly complex Advanced Driver Assistance System (ADAS) applications. The aggressive attempts of automakers to make vehicles fully autonomous have increased the complexity and data rate requirements of applications and further led to the adoption of advanced artificial intelligence (AI) based techniques for improved perception and control. Additionally, modern vehicles are becoming increasingly connected with various external systems to realize more robust vehicle autonomy. These paradigm shifts have resulted in significant overheads in resource constrained ECUs and increased the complexity of the overall automotive system (including heterogeneous ECUs, network architectures, communication protocols, and applications), which has severe performance and safety implications on modern vehicles. The increased complexity of automotive systems introduces several computation and communication uncertainties in automotive subsystems that can cause delays in applications and messages, resulting in missed real-time deadlines. Missing deadlines for safety-critical automotive applications can be catastrophic, and this problem will be further aggravated in the case of future autonomous vehicles. Additionally, due to the harsh operating conditions (such as high temperatures, vibrations, and electromagnetic interference (EMI)) of automotive embedded systems, there is a significant risk to the integrity of the data that is exchanged between ECUs which can lead to faulty vehicle control. These challenges demand a more reliable design of automotive systems that is resilient to uncertainties and supports data integrity goals. Additionally, the increased connectivity of modern vehicles has made them highly vulnerable to various kinds of sophisticated security attacks. Hence, it is also vital to ensure the security of automotive systems, and it will become crucial as connected and autonomous vehicles become more ubiquitous. However, imposing security mechanisms on the resource constrained automotive systems can result in additional computation and communication overhead, potentially leading to further missed deadlines. Therefore, it is crucial to design techniques that incur very minimal overhead (lightweight) when trying to achieve the above-mentioned goals and ensure the real-time performance of the system. We address these issues by designing a holistic resource management framework called ROSETTA that enables robust and secure automotive cyber-physical system design while satisfying a diverse set of constraints related to reliability, security, real-time performance, and energy consumption. To achieve reliability goals, we have developed several techniques for reliability-aware scheduling and multi-level monitoring of signal integrity. To achieve security objectives, we have proposed a lightweight security framework that provides confidentiality and authenticity while meeting both security and real-time constraints. We have also introduced multiple deep learning based intrusion detection systems (IDS) to monitor and detect cyber-attacks in the in-vehicle network. Lastly, we have introduced novel techniques for jitter management and security management and deployed lightweight IDSs on resource constrained automotive ECUs while ensuring the real-time performance of the automotive systems

    Guest editorial : Introduction to the special issue on connected vehicles in intelligent transportation systems

    Get PDF
    Connected vehicles (CVs) are one of the critical components of intelligent transportation systems. CVs enable any vehicle to act as a smart node that collects and shares information on vehicles, roads, and their surroundings. This information can then be distributed to other vehicles via vehicle-to-vehicle (V2V) communication, and also to road users via vehicle-to-human (V2H) communication, for an improved driving experience. The information can also be forwarded toward traffic control systems via vehicle-to-infrastructure (V2I) communication, for improved traffic management and road safety. Making use of of connected vehicles in intelligent transportation systems will revolutionize the way we drive. Many issues, however, need to be resolved to achieve better performance of connected vehicles. Improvements relate to data processing and storage, the development of standards and regulations across all platforms, design and deployment of new communication protocols and system architectures, and the creation and introduction of new services and applications.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979hj2018Electrical, Electronic and Computer Engineerin

    Collaborative Decision-Making Using Spatiotemporal Graphs in Connected Autonomy

    Full text link
    Collaborative decision-making is an essential capability for multi-robot systems, such as connected vehicles, to collaboratively control autonomous vehicles in accident-prone scenarios. Under limited communication bandwidth, capturing comprehensive situational awareness by integrating connected agents' observation is very challenging. In this paper, we propose a novel collaborative decision-making method that efficiently and effectively integrates collaborators' representations to control the ego vehicle in accident-prone scenarios. Our approach formulates collaborative decision-making as a classification problem. We first represent sequences of raw observations as spatiotemporal graphs, which significantly reduce the package size to share among connected vehicles. Then we design a novel spatiotemporal graph neural network based on heterogeneous graph learning, which analyzes spatial and temporal connections of objects in a unified way for collaborative decision-making. We evaluate our approach using a high-fidelity simulator that considers realistic traffic, communication bandwidth, and vehicle sensing among connected autonomous vehicles. The experimental results show that our representation achieves over 100x reduction in the shared data size that meets the requirements of communication bandwidth for connected autonomous driving. In addition, our approach achieves over 30% improvements in driving safety

    The Car and The Cloud: Automotive Architectures for 2020

    Get PDF
    Three trends are emerging in drivers’ expectations for their vehicle: (1) continuous connectivity with both the infrastructure (e.g., smart traffic intersections) and other commuters, (2) enhanced levels of productivity and entertainment for the duration of travel, and (3) reduction in cognitive load through semiautonomous operation and automated congestion-aware route planning. To address these demands, vehicles should become more programmable so that almost every aspect of engine control, cabin comfort, connectivity, navigation, and safety will be remotely upgradable and designed to evolve over the lifetime of the vehicle. Progress toward the vehicle of the future will entail new approaches in the design and sustainability of vehicles so that they are connected to networked traffic systems and are programmable over the course of their lifetime. To that end, our automotive research team at the University of Pennsylvania is devel- oping an in-vehicle programmable system, AutoPlug, an automotive architecture for remote diagnostics, testing, and code updates for dispatch from a datacenter to vehicle electronic controller units. For connected vehicles, we are implementing a networked vehicle platform, GrooveNet, that allows communication between real and simulated vehicles to evaluate the feasibility and application of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication; the focus in this paper is on its application to safety. Finally, we are working on a tool for large-scale traffic congestion analysis, AutoMatrix, capable of simulating over 16 million vehicles on any US street map and computing real-time fastest paths for a large subset of vehicles. The tools and platforms described here are free and open-source from the author
    corecore